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Preface

As the title of this book already suggests, this manuscript is intended to be a textbook
suitable for a first course in coding theory. It is based on a course that is taught for
several years at the Eindhoven University of Technology. The students that follow this
course are mostly in the third or fourth year of their undergraduate program. Typically,
half of them are computer science students, a third of them study mathematics and the
remainder are students in electrical engineering or information technology.

All these students are familiar with linear algebra and have at least a rudimentary
knowledge of probability theory. More importantly, it is assumed here that they are
familiar with the theory of finite fields and with elementary number theory. Clearly the
latter is not the case at many universities. It is for this reason that a large appendix
has been added (Appendix A), containing all the necessary prerequisites with regard to
finite field theory and elementary number theory.

All chapters contain exercises that we urge the students to solve. Working at these
problems seems to be the only way to master this field. As a service to the student that
is stranded with a problem or to give a student a chance to look at a (possibly different)
solution, all problems are completely worked out in Appendix C.

The main part of this manuscript was written at the University of Pretoria in the summer
of 1991. I gladly acknowledge the hospitality that Gideon Kühn and Walter Penzhorn
extended to me during my stay there.

I would like to express my gratitude to Patrick Bours, Martin van Dijk, Tor Helleseth,
Christoph Kirfel, Dirk Kleima, Jack van Lint, Paul van der Moolen, Karel Post, Hans
Sterk, René Struik, Hans van Tilburg, Rob Versseput, Evert van de Vrie, Øyvind Ytrehus
and many of the students for all the corrections and suggestions that they have given
me.

A special word of thanks I owe to Iwan Duursma who made it possible to include at a
very late stage a section on algebraic-geometry codes (he presented me a first draft for
Section 4.6). Finally, I am indebted to Anneliese Vermeulen-Adolfs for her instrumental
help in making this manuscript publisher-ready.
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Chapter 1

A communication system

1.1 Introduction

Communicating information from one person to another is of course an activity that is
as old as mankind. The (mathematical) theory of the underlying principles is not so old.
It started in 1948, when C.E. Shannon gave a formal description of a communication
system and, at the same time, also introduced a beautiful theory about the concept of
information, including a good measure for the amount of information in a message.

In the context of this book, there will always be two parties involved in the transmission
of information. The sender of the message(s) (also called the source) and the receiver
(also called the sink). In some applications the sender will write information on a medium
(like a floppy disc) and the receiver will read it out later. In other applications, the sender
will actually transmit the information (for instance by satellite or telephone line) to the
receiver. Either way, the receiver will not always receive the same information as was
sent originally, simply because the medium is not always perfect. This medium will be
discussed in the next section. In Section 1.3 we will discuss Shannon’s answer to the
problem of transmission errors.

1.2 The channel

The medium over which information is sent, together with its characteristics, is called
the channel. These characteristics consist of an input alphabet X, an output alphabet
Y, and a transition probability function P .

Unless explicitly stated otherwise, it will always be assumed that successive transmissions
have the same transition probability function and are independent of each other. In
particular, the channel is assumed to be memoryless.
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Figure 1.1: The binary symmetric channel

Definition 1.2.1 A channel (X, Y ;P ) consists of an alphabet X of input symbols, an
alphabet Y of output symbols, and for each x in X and y in Y the conditional probabil-
ity p(y|x) that symbol y is received, when symbol x was transmitted (this probability is
independent of previous and later transmissions).

Of course
∑

y∈Y p(y|x) = 1 for all x in X.

The channel that we shall be studying the most will be the Binary Symmetric Channel,
shortened to BSC. It is depicted in Figure 1.1.

Definition 1.2.2 The Binary Symmetric Channel is the channel (X, Y ;P ) with both
X and Y equal to {0, 1} and P given by p(1|0) = p(0|1) = p and p(0|0) = p(1|1) = 1− p
for some 0 ≤ p ≤ 1.

So, with probability 1 − p a transmitted symbol will be received correctly and with
probability p it will be received incorrectly. In the latter case, one says that an error has
occurred.

Of course, if p > 1
2

the receiver gets a more reliable channel by inverting the received
symbols. For this reason we shall always assume that 0 ≤ p ≤ 1

2
.

The BSC gives a fair description of the channel in many applications. A straightforward
generalization is the q-ary symmetric channel. It is defined by X = Y, both of cardinality
q, and the transition probabilities p(y|x) = 1 − p, if x = y, and p(y|x) = p/(q − 1), if
x 6= y.

Another type of channel is the Gaussian channel, given by X = {−1, 1}, Y = IR and the
probability density function p(y|x) which is the Gaussian distribution with x as mean
and with some given variance, depending on the reliability of the channel, i.e.

p(y|x) =
1√
2πσ

e−(y−x)2/2σ2

.

If the actual channel is Gaussian, one can reduce it to the BSC, by replacing every y ≥ 0
by 1 and every y < 0 by 0, and by writing 0 instead of the the input symbol −1. By
doing this, one loses information about the reliability of a received symbol. Indeed, the
received symbol y = 1.2 is much more likely to come from the transmitted symbol 1,
than the received symbol y = 0.01. By reducing the Gaussian channel to the BSC, one
throws away information about the transmitted symbol.
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1.3. SHANNON THEORY AND CODES

In some applications the channel is inherently of the BSC-type and not a reduction of
the Gaussian channel.

Similarly, by dividing IR into three appropriate regions, (−∞,−a], (−a, a) and
[a,∞), a ≥ 0, one obtains the following channel.

Definition 1.2.3 The binary symmetric error and erasure channel is a channel
(X, Y ;P ) with X = {0, 1}, Y = {0, ∗, 1}, and P given by p(0|0) = p(1|1) = 1− p′ − p′′,
p(1|0) = p(0|1) = p′ and p(∗|0) = p(∗|1) = p′′ for some non-negative p′ and p′′ with
0 ≤ p′ + p′′ ≤ 1.

The ∗ symbol means that there is too much ambiguity about the transmitted symbol.
One speaks of an erasure.

In the above channels, the errors and erasures in transmitted symbols occur indepen-
dently of each other. There are however applications where this is not the case. If the
errors tend to occur in clusters we speak of a burst-channel. Such a cluster of errors is
called a burst. A more formal definition will be given in Chapter 5. Even a mixture of
the above error types can occur: random errors and bursts.

Unless explicitly stated otherwise, we will always assume the channel to be the BSC.

1.3 Shannon theory and codes

If one wants to transmit a 1 over the BSC that has error probability p, one can increase the
reliability of the transmission by repeating the transmission a few times, say altogether
five times. Similarly one can send five 0’s if a single 0 needs to be transmitted. The
receiver can use a simple majority vote on the received sequence y1, y2, y3, y4, y5 to decide
what the most likely transmitted symbol is. For instance, if 1,1,0,0,1 is received, the most
likely transmitted sequence is of course 1,1,1,1,1.

With this system, it is still possible that the receiver makes an error, namely if three
or more errors have occurred in a transmitted 5-tuple. If at most two errors occurred
during the transmission, the receiver will make the correct estimate of the transmitted
information. The probability of correct transmission of the information is given by the
probability that no error occurred, plus the probability that exactly one of the five
coordinates is in error, plus the probability that exactly two of the five coordinates are
in error, so it is given by

(1− p)5 +

(
5

1

)
p1(1− p)4 +

(
5

2

)
p2(1− p)3.

For p = 0.01, this probablity is 0.999986 as opposed to 0.99 when only one symbol
was transmitted. Of course, the price that has been paid for this dramatic increase in
reliability is the transmission of five bits instead of just one!
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CHAPTER 1. A COMMUNICATION SYSTEM
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a x y a′

Figure 1.2: A communication system

Transmitting more symbols than is strictly necessary to convey the message is called
adding redundancy to the message. Regular languages know the same phenomenon. The
fact that one immediately sees the obvious misprints in a word, like ‘lacomotivf’, means
that the word contains more letters than are strictly necessary to convey the message.
The redundant letters enable us to correct the misspelling of the received word.

Definition 1.3.1 An encoder is a mapping (or algorithm) that transforms each sequence
of symbols from the message alphabet A to a sequence of symbols from the input alphabet
X of the channel, in such a way that redundancy is added (to protect it better against
channel errors).

A complete decoder is an algorithm that transforms the received sequence of symbols
of the output alphabet Y of the channel into a message stream over A. If a decoder
sometimes fails to do this (because it is not able to do so or to avoid messages that are
too unreliable) one speaks of an incomplete decoder.

The channel, encoder, and decoder, together with the sender and receiver, form a so-
called communication system. See Figure 1.2, where a denotes the message stream, x a
sequence of letters in X, y a sequence of letters in Y and a′ a message stream.

A decoder that always finds the most likely (in terms of the channel probabilities) trans-
mitted message stream a′, given the received sequence y, is called a maximum likelihood
decoder. The decoder that was described above for the encoder that repeated each
information bit five times is an example of a maximum likelihood decoder.

In Section 1.2 we have seen how the reduction of the Gaussian channel to the BSC throws
away (valuable) information. A decoder that uses the output of this (reduced) BSC as
its input is called a hard decision decoding algorithm, while it is called a soft decision
decoding algorithm otherwise.

A final distinction is the one between encoders (and decoders) with and without memory.

Definition 1.3.2 If the encoder maps k-tuples of symbols from the message alphabet A
in a one-to-one way to n-tuples of symbols from the input alphabet X of the channel
(independent of the other input k-tuples), the resulting set of |A|k output n-tuples is
called a block code. For the elements of a block code one uses the name codeword.

Definition 1.3.3 If the encoder maps k-tuples of symbols from the message alphabet
A to n-tuples of symbols from the input alphabet X of the channel in a way that also
depends on the last m input k-tuples, where m is some fixed parameter, the resulting

4



1.3. SHANNON THEORY AND CODES

sequence of output n-tuples is called a convolutional code. These output sequences are
also named codewords.

For a long stream of message symbols, one of course has to break it up into segments of
length k each before they can be handled by the encoder.

Convolutional codes will be discussed in Chapter 6. Block codes form the main topic
of this book. They will be extensively discussed in Chapters 2–5. Note that the code
discussed before, in which each message symbol is repeated four times, is an example of
a block code with k = 1 and n = 5.

Let M denote the size of A and let q denote the size of X. If all k-tuples of M -ary
symbols are equally likely, one needs dk log2Me bits to denote one of them. This may
not be so obvious in general, but when M is some power of 2, this is a straightforward
observation. Similarly for each of qn equally likely n-tuples of q-ary symbols one needs
n log2 q bits. Let the information rate R denote the amount of information that an input
symbol of the channel contains. It follows that

R =
k log2M

n log2 q
. (1.1)

If q = 2, this reduces to R = k log2 M
n

.

If q = M, equation (1.1) simplifies to R = k/n. The interpretation of the information rate
in this case corresponds with the intuitive interpretation: if k information symbols are
mapped into n channel input symbols from the same alphabet, the information density
in these channel input symbols is k/n.

By using block and convolutional codes, the sender wants to get information to the
receiver in a more reliable way than without using the codes. By repeating each in-
formation symbol sufficiently many times, one can achieve this and obtain a reliability
arbitrarily close to 1. However, the price that one pays is the inefficient use of the
channel: the rate of this sequence of codes tends to zero!

What Shannon was able to prove in 1948 (see: Shannon, C.E., A mathematical theory of
communication, Bell Syst. Tech. J., 27, pp. 379-423, 623-656, 1948) is that, as long as
the rate R is smaller than some quantity C, one can (for sufficiently long block lengths
n) find encodings at rate R, such that the probability of incorrect decoding (when using
maximum likelihood decoding) can be made arbitrarily small, while this is not possible
for rates above that quantity! This result forms the foundation of the whole theory of
error-correcting codes.

Definition 1.3.4 The entropy function h(p) is defined for 0 ≤ p ≤ 1 by

h(p) =

{
−p log2 p− (1− p) log2(1− p), if 0 < p < 1,
0, if p = 0 or 1.

(1.2)
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Figure 1.3: The entropy function h(p) and the capacity C of the BSC

Although it will not be further discussed here, Shannon’s information theory makes
it possible to interpret h(p) as the uncertainty that the receiver of a specific binary
symbol (transmitted over the BSC with error probability p) still has about the actually
transmitted symbol. In other words, 1 − h(p) is the amount of information that the
received symbol carries about the transmitted symbol.

Theorem 1.3.5 (Shannon) Consider the BSC with error probability p and let C =
1− h(p). Then, for each rate R with R < C, an infinite sequence of encodings El exists,
where El maps binary kl-tuples to binary nl-tuples with kl = dRnle (so El has rate > R),
such that the corresponding maximum-likelihood decoding algorithms have a probability
of incorrect decoding that goes exponentially fast to 0 as a function of nl, for l→∞.

For rates R greater than C, no encodings can be made with error probabilities tending to
zero.

One should realize that a decoding algorithm for an infinite class of codes that does not
always yield the most likely transmitted sequence may still have a negligible probablity
of incorrect decoding, when the length of these codes tends to infinity.

The quantity C in Theorem 1.3.5 is called the capacity of the channel. The entropy
function and the capacity function are depicted in Figure 1.3.

As one can see in Figure 1.3 (b), the BSC with p = 1/2 cannot be used to transmit any
information. The receiver may as well write down his own sequence of symbols instead of
listening to the channel. At the other extreme, p = 0 and p = 1 imply that information
can be sent at rate 1.

It is the ultimate goal of coding theory to find (families of) codes that approach the
capacity of the BSC and that have efficient decoding algorithms.

6



1.4. PROBLEMS

1.4 Problems

1.4.1 Suppose that four messages are encoded into 000000, 001111, 110011 and 111100.
These four messages are transmitted with equal probablity over a BSC with error
probability p. If one receives a sequence different from the four sequences above,
one knows that errors have been made during the transmission.

What is the probability that errors have been made during the transmission and
that the receiver will not find out?

1.4.2 Suppose that either (−1,−1,−1) or (+1,+1,+1) is transmitted (each with prob-
ability 1/2) over the Gaussian channel defined by the density function

p(y|x) =
1√
2π
e−(y−x)2/2.

What is the most likely transmitted sequence when the word (−1,+0.01,+0.01)
is received?

What is the answer to this question if a maximum likelihood, hard decision de-
coding algorithm has been applied?

7
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Chapter 2

Linear block codes

2.1 Block codes

In this chapter, block codes for the q-ary symmetric channel will be introduced. Let n
be fixed and let the input and output symbols of the channel belong to an alphabet Q
of cardinality q. The set of Q-ary n-tuples is denoted by Qn.

A distance metric on Qn that reflects the properties of the q-ary symmetric channel very
well, is the following.

Definition 2.1.1 The Hamming distance d(x,y) between x= (x1, x2, . . . , xn) and y=
(y1, y2, . . . , yn) in Qn is given by

d(x,y) = |{1 ≤ i ≤ n | xi 6= yi}|. (2.1)

In words: d(x,y) is the number of coordinates, where x and y differ. It follows from
the properties of the q-ary symmetric channel that the more x and y differ, the more
unlikely one will be received if the other was transmitted.

It is very simple to verify that d(x,x) = 0, d(x,y) = d(y,x) and that the triangle
inequality holds: d(x, z) ≤ d(x,y) + d(y, z) for any x,y and z in Qn. So the Hamming
distance is indeed a distance function.

A q-ary block code C of length n is any nonempty subset of Qn. The elements of C are
called codewords. If |C| = 1, the code is called trivial. Quite often one simply speaks of
a “code” instead of a “block code”.

To maximize the error-protection, one needs codewords to have sufficient mutual dis-
tance.

Definition 2.1.2 The minimum distance d of a non-trivial code C is given by

d = min{d(x,y) | x ∈ C,y ∈ C,x 6= y}. (2.2)

9



CHAPTER 2. LINEAR BLOCK CODES

The error-correcting capability e is defined by

e =

⌊
d− 1

2

⌋
. (2.3)

The reason for the name error-correcting capability is quite obvious. If d is the minimum
distance of a code C and if during the transmission of the codeword c over the channel
at most e errors have been made, the received word r will still be closer to c than to any
other codeword. So a maximum likelihood decoding algorithm applied to r will result in
c.

However, codes can also be used for error-detection. Let t be some integer, t ≤ e. Then
it follows from the definition of d that no word in Qn can be at distance at most t from
one codeword, while at the same time being at distance up to d− t− 1 from some other
codeword. This means that one can correct up to t errors, but also detect if more than
t have occurred, as long as not more than d− t− 1 errors have occurred.

Similarly, a code C with minimum distance d can also be used for the simultaneous
correction of errors and erasures. Let e and f be fixed such that 2e+ f < d. A received
word r with at most f erasures cannot have distance ≤ e from two different codewords
c1 and c2 at the other n − f coordinates, because that would imply that d(c1, c2) ≤
2e+ f < d. It follows that C is e-error, f -erasure-correcting.

A different interpretation of Definition 2.1.2 is that spheres of radius e around the code-
words are disjoint. Let Br(x) denote the sphere of radius r around x, defined by
{y ∈ Qn | d(y,x) ≤ r}. To determine the cardinality of Br(x) we first want to find
the number of words at distance i to x. To find these words, one needs to choose exactly
i of the n coordinates of x and replace each by one of the other q− 1 alphabet symbols.
So there are

(
n
i

)
(q − 1)i words at distance i from x and thus

|Br(x)| =
r∑

i=0

(
n

i

)
(q − 1)i. (2.4)

Since all spheres with radius e around the |C| codewords are disjoint and there are only
qn distinct words in Qn, we have proved the following theorem.

Theorem 2.1.3 (Hamming bound) Let C be an e-error-correcting code. Then

|C|
e∑

i=0

(
n

i

)
(q − 1)i ≤ qn. (2.5)

Let d(x, C) denote the distance from x to the code C, so d(x, C) = min{d(x, c) | c ∈ C}.
The next notion tells us how far a received word can possibly be removed from a code.

Definition 2.1.4 The covering radius ρ of a code C is given by

ρ = max{d(x, C) | x ∈ Qn}. (2.6)

10



2.1. BLOCK CODES

Since every word x in Qn is at distance at most ρ to some codeword, say c, it is also
inside at least one of the spheres of radius ρ around the codewords (namely Bρ(c)). So
these spheres together cover Qn. This proves the following theorem.

Theorem 2.1.5 Let C be a code with covering radius ρ then

|C|
ρ∑

i=0

(
n

i

)
(q − 1)i ≥ qn. (2.7)

It follows from (2.5) and (2.7) that e ≤ ρ for every code. Equality turns out to be
possible!

Definition 2.1.6 An e-error-correcting code C with covering radius ρ is called perfect
if

e = ρ.

A different way of saying that an e-error-correcting code C is perfect is “the spheres with
radius e around the codewords cover Qn” or “every element in Qn is at distance at most
e from a unique codeword”.

Equations (2.5) and (2.7) imply the following theorem.

Theorem 2.1.7 (Sphere packing bound) Let C be an e-error-correcting code. Then
C is perfect if and only if

|C|
e∑

i=0

(
n

i

)
(q − 1)i = qn. (2.8)

We have already seen a code that is perfect: the binary code of length 5 with just the
two codewords (0, 0, 0, 0, 0) and (1, 1, 1, 1, 1). It is a special example of what is called the
q-ary repetition code of length n:

C = {(
n︷ ︸︸ ︷

c, c, . . . , c) | c ∈ Q}.

This code has minimum distance d = n. So, for odd n the code has e = (n−1)/2. In the
binary case one can take Q = {0, 1} and gets C = {0,1}, where 0 = (0, 0, . . . , 0) and
1 = (1, 1, . . . , 1). It follows that a word with at most (n− 1)/2 coordinates equal to 1, is
in B(n−1)/2(0), but not in B(n−1)/2(1), while a word with at least (n + 1)/2 coordinates
equal to 1, is in B(n−1)/2(1), but not in B(n−1)/2(0). This means that ρ = (n− 1)/2 = e
and that the binary repetition code of odd length is perfect.

Instead of stating that C is a code of length n, minimum distance d and cardinality M ,
we shall just say that C is a (n,M, d) code.

Clearly if one applies the same coordinate permutation to all the codewords of C one
obtains a new code C ′ that has the same parameters as C. The same is true if for each
coordinate one allows a permutation of the symbols in Q. Codes that can be obtained

11



CHAPTER 2. LINEAR BLOCK CODES

from each other in this way are called equivalent. From a coding theoretic point of view
they are the same.

The rate of a q-ary code C of length n is defined by

R =
logq |C|

n
. (2.9)

This definition coincides with (1.1), if one really maps q-ary k-tuples into q-ary n-tuples
(then R = k/n), but it also coincides with (1.1) in general. Indeed, if the encoder in
(1.3.1) has an input alphabet of size |C| and maps each input symbol onto a unique
codeword (so k = 1 and M = |C|), equation (1.1) reduces to (2.9).

Before we end this section, two more bounds will be given.

Theorem 2.1.8 (Singleton bound) Let C be a q-ary (n,M, d) code. Then

M ≤ qn−d+1. (2.10)

Proof: Erase in every codeword the last d − 1 coordinates. Because all codewords
originally have distance at least d, the new words will still all be distinct. Their length
is n − d + 1. However, there are only qn−d+1 distinct words of length n − d + 1 over an
alphabet of size q.

2

Codes with parameters (n, qn−d+1, d) (i.e. for which the Singleton bound holds with
equality) are called maximum-distance-separable codes or simply MDS codes.

Now that we have seen several bounds that give an upper bound on the size of a code
in terms of n and d, it is good to know that also lower bounds exist.

Theorem 2.1.9 (Gilbert-Varshamov bound) There exist q-ary (n,M, d) codes sat-
isfying

M ≥ qn∑d−1
i=0

(
n
i

)
(q − 1)i

. (2.11)

Proof: As long as a q-ary (n,M, d) code C satisfies M < qn∑d−1

i=0 (n
i)(q−1)i

the spheres with

radius d − 1 around the words in C will not cover the set of all q-ary n-tuples, so one
can add a word to C that has distance at least d to all elements of C.

2

2.2 Linear codes

If one assumes the alphabet Q and the code C to have some internal structure, one can
construct and analyze codes much more easily than in the absence of such structures.

12
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From now on Q will always have the structure of the Galois field GF (q), the finite field
with q elements (for the reader who is not familiar with finite fields Appendix A is
included). As a consequence q = pm for some prime p. Very often q will simply be 2.

Now that Q = GF (q), we can associate the set of words Qn with an n-dimensional vector
space over GF (q). It will be denoted by Vn(q). For Vn(2) we shall simply write Vn. The
elements in Vn(q) are of course vectors, but will occasionally still be called words. The
symbols denoting vectors will be underlined.

If a codeword c has been transmitted but the vector r is received, the error pattern,
caused by the channel, is the vector e with

r = c+ e. (2.12)

The addition in (2.12) denotes the vector addition in Vn(q). The number of errors that
occurred during the transmission is the number of non-zero entries in e.

Definition 2.2.1 The Hamming weight w(x) of a vector x is the number of non-zero
coordinates in x. So

w(x) = d(x, 0).

Now that Qn has the structure of the vector space Vn(q), we can define the most impor-
tant general class of codes.

Definition 2.2.2 A linear code C of length n is any linear subspace of Vn(q).

If C has dimension k and minimum distance d, one says that C is an [n, k, d] code.

Note that a q-ary (n,M, d) code C has cardinality M, while a q-ary [n, k, d] code C is
linear and has cardinality qk. The parameter d in the notations (n,M, d) and [n, k, d] is
sometimes omitted.

To determine the minimum distance of an unstructured (n,M, d) code C one has to

compute the distance between all
(

M
2

)
pairs of codewords. For linear codes without

further structure, the next theorem will prove that this complexity is only M − 1. This
is the first bonus of the special structure of linear codes.

Theorem 2.2.3 The minimum distance of a linear code C is equal to the minimum
non-zero weight in C.

Proof: Since C is linear, with x and y in C also x− y is in C. The theorem now follows
from the two observations:

d(x, y) = d(x− y, 0) = w(x− y),

w(x) = d(x, 0),

which state that the distance between any two distinct codewords is equal to the weight
of some non-zero codeword and vice versa.

13
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2

So, to determine the minimum distance of a linear code, one never needs to do more
than to find the lowest weight of all M − 1 non-zero codewords.

There are two standard ways of describing a k-dimensional linear subspace: one by means
of k independent basis vectors, the other uses n−k linearly independent equations. Both
techniques turn out to be quite powerful in this context.

Definition 2.2.4 A generator matrix G of an [n, k, d] code C is a k×n matrix, of which
the k rows form a basis of C. One says “the rows of G generate C”.

It follows that

C = {aG | a ∈ Vk(q)} (2.13)

The codeword c = aG in (2.13) is the result of the encoding algorithm “multiplication
by G” applied to the so-called information vector or message vector a.

Example 2.2.5 A generator matrix of the q-ary [n, 1, n] repetition code is given by

G = (1 1 · · · · · · 1).

Example 2.2.6 The binary even weight code is defined as the set of all words of even
weight. It is a linear code with parameters [n, n− 1, 2]. A generator matrix of the even
weight code is given by

G =



1 0 0 · · · · · · 0 1
0 1 0 · · · · · · 0 1
0 0 1 · · · · · · 0 1
...

...
...

. . .
...

...
...

...
...

. . .
...

...
0 0 0 · · · · · · 1 1


.

Examples 2.2.5 and 2.2.6 are also examples of what is called a generator matrix in
standard form, i.e. a generator matrix of the form (Ik P ), where Ik is the k× k identity
matrix. If G is in standard form, the first k coordinates of a codeword aG produce
the information vector a itself! For this reason these coordinates are called information
symbols. The last n − k coordinates are added to the k information symbols to make
error-correction possible.

Since the generator matrix of a linear code has full row rank, it is quite obvious that any
linear code is equivalent to a linear code that does have a generator matrix in standard
form. The quantity r = n− k is called the redundancy of the code.

Non-linear codes of cardinality qk sometimes also have the property that on the first
k coordinates all qk possible (information) sequences occur. These codes are called
systematic on the first k coordinates. It follows from the proof of the Singleton bound

14
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(Theorem 2.1.8) that MDS codes are systematic on every k-tuple of coordinates. Also
the converse holds (see Problem 2.5.10).

The second way of describing linear codes is as follows.

Definition 2.2.7 A parity check matrix H of an [n, k, d] code C is an (n−k)×n matrix,
satisfying

c ∈ C ⇐⇒ HcT = 0T . (2.14)

In other words C is the null space (solution space) of the n − k linearly independent
equations HxT = 0T .

If G is in standard form (Ik P ), one can take H = (−P T In−k). This is so, because
this H has rank n− k and satisfies GHT = −P +P = Ok,n−k, the all-zero matrix of size
k × (n− k). From this standard form of H it is clear that the last n− k coordinates of
a codeword are uniquely determined by the initial k coordinates and the parity check
equations. For this reason the last n− k symbols are called the parity check symbols of
C.

Let (x, y) denote the regular inner product
∑n

i=1 xiyi in Vn(q). We shall say that two
vectors are orthogonal to each other if they have inner product zero. A word of warning
is in place: in Vn(q) a word can be orthogonal to itself without being 0. For instance,
in V4(3) the vector (1, 0, 2, 1) is orthogonal to itself! In Vn every even-weight vector is
orthogonal to itself. In particular, it follows that a set of mutually orthogonal vectors
do not have to be linearly independent.

Definition 2.2.8 The dual code C⊥ of an [n, k, d] code C is defined by

C⊥ = {x ∈ Vn(q) | (x, c) = 0 for all c ∈ C}. (2.15)

It is quite clear that C⊥ is a linear subspace of dimension n−k. So C⊥ is an [n, n−k, d⊥]
code, where d⊥ denotes the minimum distance of C⊥. Also, because GHT = O, it is
straightforward to check that C⊥ has as its generator matrix the parity check matrix H
of C and as its parity check matrix the generator matrixG of C. Another easy observation
is that the dual code of the dual of C is C itself: (C⊥)⊥ = C.

We have already seen that a non-zero word can be orthogonal to itself. It is also possible
that a non-zero vector can be in C and in C⊥ at the same time. There exist, as a matter
of fact, codes C that are completely contained in their dual C⊥. Such codes are called
self-orthogonal. If C = C⊥, the code is called self-dual.

Examples 2.2.5 and 2.2.6 (continued)

Over GF (2) the two matrices in Examples 2.2.5 and 2.2.6 are orthogonal to each other.
It follows that in Vn(2) the repetition code and the even weight code are duals of each
other.

We now come to the second important advantage of having the extra structure of being
linear available. Up to now, the only way to decode a received word was to compare it
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with all codewords and find the closest. This technique has complexity |C| and thus for
q-ary [n, k, d] codes complexity qk.

Definition 2.2.9 Let C be a q-ary [n, k, d] code with parity check matrix H. The syn-
drome s of a vector x in Vn(q) is the vector in Vn−k(q) defined by s = HxT .

Note that a syndrome s is a column vector, while the vectors related to transmitted or
received words are row vectors.

If the syndrome of a received word r is 0, then r is a codeword and most likely no error
has occurred during the transmission.

In general, if the codeword c has been transmitted and the word r = c + e has been
received, where e is the error pattern, one has

HrT = H(c+ e)T = HcT +HeT = HeT . (2.16)

So, the syndrome of r is completely determined by that of e. The real decoding problem
is how to find the codeword c that is closest to the received word r, in other words to
find a vector e of minimal weight, such that r − e is in C.

Now let s in Vn−k(q) be the syndrome of a received word r. Then not just r is a solution
of s = HxT , but all vectors r + c with c in C form the solution space of this system of
linear equations. The set {r+ c | c in C} forms a coset of C in the additive group Vn(q).
We need to find a vector e of minimal weight in this coset. This minimum weight word
in the coset is called the coset leader of the coset. As we shall see later, this coset leader
does not have to be unique. However, if C is e-error-correcting, each word of weight at
most e will be the unique coset leader of a unique coset. Indeed if two distinct words
of weight at most e would lie in the same coset, their difference would be a codeword of
weight at most 2e, a contradiction with the minimum distance of C, which is 2e + 1 or
2e+ 2.

Once e has been found, the codeword c = r−e is a good maximum-likelihood estimate of
the transmitted codeword, in the sense that no other codeword has a higher probability
of being transmitted. That r − e is indeed a codeword, follows from the fact that
both vectors have the same syndrome, so their difference has syndrome 0, i.e. is in C. It
follows from the above that the next algorithm is indeed a maximum-likelihood decoding
algorithm for each linear code.

Algorithm 2.2.10 (Syndrome decoding) Let r be the received vector.

1. Compute the syndrome s = HrT of the received vector r.

2. Find the coset leader e of the coset with syndrome s.

3. Decode r into c = r − e.
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Once one has made a table of all syndromes with a corresponding coset leader, Algorithm
2.2.10 yields a maximum-likelihood decoding algorithm with complexity qn−k. So for
k > n/2, this algorithm is faster than the brute-force approach of comparing the received
word with all qk codewords. In subsequent chapters we shall meet codes with decoding
algorithms that do not have an exponentially-fast growing complexity.

Example 2.2.11 Consider the binary [6, 3, 3] code C with parity check matrix

H =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

 .
That the minimum distance of C is indeed 3, can (because the parameters are small in
this case) be checked quite easily by hand (and of course by Theorem 2.2.3). Indeed, C
contains four codewords of weight 3 and three of weight 4.

A much simpler way to find the minimum distance of C is the observation that any
two distinct columns of H are linearly independent. So a non-zero word can only have
syndrome 0 if its weight is at least three.

Now, seven syndromes turn out to have a unique coset leader. For instance, the syndrome
s = (1, 0, 1)T is equal to the fifth column in H, so it has (0, 0, 0, 0, 1, 0) as unique coset
leader.

However, to write syndrome s = (1, 1, 1)T as linear combination of columns of H one
needs two columns. There are three possible ways to do this, giving rise to the three
coset leaders: (1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0) or (0, 0, 1, 0, 0, 1). We can take any one of
these, say the first.

If the error pattern is indeed one of these eight coset leaders, one will find the transmitted
codeword back. This is the case for each single-error pattern, but also for (1, 0, 0, 1, 0, 0).
So, syndrome decoding of C, when used over the BSC with error probability p, yields
the following probability of correct decoding:

(1− p)6 + 6p(1− p)5 + p2(1− p)4.

Note that in the expansion of this expression no linear term occurs. In the uncoded case,
i.e. if the information vector (a1, a2, a3) is equal to the transmitted vector, the probablity
of correct “decoding” is (1− p)3. It follows that for small values of p and here in fact for
0 < p < 1/2, the [6, 3, 3] code will give a better performance.

To conclude this section, we present the “linear” version of Theorems 2.1.8 and 2.1.9.
The proof of the first one is immediate.

Theorem 2.1.8 (Singleton bound) (continued)

Let C be a q-ary [n, k, d] code. Then

k ≤ n− d+ 1. (2.17)
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Theorem 2.1.9 (Gilbert-Varshamov bound) (continued)

Let k be the smallest integer satisfying

qk ≥ qn∑d−1
i=0

(
n
i

)
(q − 1)i

. (2.18)

Then a q-ary [n, k, d] code does exist.

Proof: If one word, say u, has distance at least d to all words in a linear code C with
minimum distance d, then the linear code

{αu+ c | α in GF (q), c in C}

properly contains C and still has minimum distance at least d. Indeed, d(α′u+ c′, α′′u+
c′′) = d(c′, c′′) ≥ d, if α′ = α′′ and c′, c′′ are distinct codewords in C. If α′ 6= α′′,
one has d(α′u + c′, α′′u + c′′) = d(α′′′u, c′′′) = d(u, c′′′/α′′′) ≥ d, by assumption. Here
α′′′ = α′ − α′′ 6= 0 and c′′′ = c′ − c′′ ∈ C.
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Starting with C = {0} apply the above argument repeatedly until (2.18) is met.

2

2.3 The MacWilliams relations

When studying properties of a linear code, it is often important to know how many
codewords have a certain weight (in particular this is true for the weights close to d).

Definition 2.3.1 Let C be a code. Then the weight enumerator A(z) of C is given by

A(z) =
n∑

i=0

Aiz
i =

∑
c∈C

zw(c). (2.19)

So, Ai, 0 ≤ i ≤ n, counts the number of code words of weight i in C.

For instance, the q-ary repetition code of length n has weight enumerator 1 + (q− 1)zn.
The code in Example 2.2.11 has weight enumerator 1 + 4z3 + 3z4.

In 1963, F.J. MacWilliams showed that the weight enumerators of a linear code C and
of its dual code C⊥ are related by a rather simple formula. This relation will turn out
to be a very powerful tool.

We need a definition and a lemma first.

Definition 2.3.2 A character χ of GF (q) is a mapping of GF (q) to the set of complex
numbers with absolute value 1, satisfying

χ(α+ β) = χ(α)χ(β) for all α and β in GF (q). (2.20)

The principal character maps every field element to 1.

It follows from χ(0) = χ(0 + 0) = χ2(0) that χ(0) = 1.

An example of a non-principal character χ of GF (p) = {0, 1, . . . , p − 1} is given by
χ(a) = expa2πi/p . It is also quite easy to find a non-principal character of GF (q). For
instance, ifGF (q) has characteristic p and ω is a complex, primitive p-th root of unity, the
function χ(α) = ωA(α), where A is any non-trivial linear mapping from GF (q) to GF (p),
will define a non-principal character of GF (q). When representing GF (q), q = pm, as an
m-dimensional vector space over GF (p) the projection on the first coordinate already
gives such a mapping. Also the trace-function Tr, defined by Tr(x) = x+ xp + . . . xpm−1

is such a mapping (see also Problem A.6.19). The fact however is that below we do need
to make an explicit choice for χ.

Lemma 2.3.3 Let χ be a character of GF (q). Then∑
α∈GF (q)

χ(α) =

{
q, if χ is the principal character,
0, otherwise.

(2.21)
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Proof: For the principal character the assertion is trivial. For a non-principal character,
take β in GF (q) such that χ(β) 6= 1. Then

χ(β)
∑

α∈GF (q)

χ(α) =
∑

α∈GF (q)

χ(α+ β) =
∑

α∈GF (q)

χ(α).

This equation can be rewritten as (1 − χ(β))
∑

α∈GF (q) χ(α) = 0. Since χ(β) 6= 1 the
assertion follows.

2

Theorem 2.3.4 (MacWilliams) Let A(z) be the weight enumerator of a q-ary, linear
code C and let B(z) be the weight enumerator of the dual code C⊥. Then

B(z) =
1

|C|
(1 + (q − 1)z)nA

(
1− z

1 + (q − 1)z

)
=

=
1

|C|

n∑
i=0

Ai(1− z)i(1 + (q − 1)z)n−i. (2.22)

Proof: Let χ be a non-principal character of GF (q). We shall evaluate the expression∑
c∈C

∑
u∈Vn(q)

χ((c, u))zw(u). (2.23)

in two different ways, obtaining in this way the left hand and the right hand sides in
(2.22).

Changing the order of summation in (2.23) yields∑
u∈Vn(q)

zw(u)
∑
c∈C

χ((c, u)). (2.24)

The inner sum in (2.24) is equal to |C|, when u is an element in C⊥, because all inner
products (c, u) are zero in this case. However, if u is not an element in C⊥, the inner
products (c, u) take on each value in GF (q) equally often (by the linearity of the inner
product). It follows from Lemma 2.3.3 that the inner sum in (2.24) is now equal to 0.
So (2.24), and thus also (2.23), is equal to∑

u∈C⊥

zw(u)|C| = |C|B(z), (2.25)

by Definition 2.3.1 applied to C⊥.

Now we shall evaluate (2.23) in a different way.
The inner sum of (2.23)

∑
u∈Vn(q) χ((c, u))zw(u) is equal to

∑
(u1,u2,...,un)∈Vn(q)

χ(c1u1 + c2u2 + · · ·+ cnun)zw((u1,u2,···,un)) =

∑
u1∈V1(q)

· · ·
∑

un∈V1(q)

χ(c1u1) · · ·χ(cnun)zw(u1) · · · zw(un) =

20



2.3. THE MACWILLIAMS RELATIONS

n∏
i=1

∑
ui∈V1(q)

χ(ciui)z
w(ui). (2.26)

The inner sum in this last expression is equal to 1 + (q− 1)z if ci = 0. If ci 6= 0 the inner
sum is equal to

1 + z
∑
α 6=0

χ(α) = 1− zχ(0) = 1− z,

by Lemma 2.3.3.

So, the inner sum in (2.23) is equal to (1 − z)w(c)(1 + (q − 1)z)n−w(c) and thus (by
Definition 2.3.1) Equation (2.23) can be rewritten as

n∑
i=0

Ai(1− z)i(1 + (q − 1)z)n−i.

Setting this equal to (2.25) proves the theorem.

2

Instead of finding the weight enumerator of a [n, k, d] code with k > n/2 directly, it is of-
ten easier to find the weight enumerator of its dual code and then apply the MacWilliams
relation.

Examples 2.2.5 and 2.2.6 (continued)

The weight enumerator of the repetition code is 1 + (q − 1)zn. So its dual has weight
enumerator

1

q
{(1 + (q − 1)z)n + (q − 1)(1− z)n} .

In particular in the binary case, it follows that the even weight code has weight enumer-
ator

1

2
{(1 + z)n + (1− z)n} =

∑
i even

(
n

i

)
zi.

Of course, the fact that the even weight code does not contain odd weight words and
does contain all even weight words just is the definition of this code.

A more interesting example of the MacWilliams relations will be given in the next chap-
ter.

The weight enumerator A(z) of a binary linear code C is very helpful when studying
the probability Pre that a maximum likelihood decoder makes a decoding error, i.e. the
probability that, while one codeword has been transmitted, the received word is in fact
closer to another codeword.
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By the linearity of C we may assume that 0 was the transmitted codeword. Let c be
a non-zero codeword of weight w. Let Pre(c) denote the probability that the received
vector is closer to c than to 0, though 0 was transmitted. Then

Pre(c) =
∑

i≥dw/2e

(
w

i

)
pi(1− p)w−i.

Now the probablity Pre of incorrectly decoding can be bounded above as follows

Pre ≤
∑

c∈C,c 6=0
Pre(c).

It follows from

∑
i≥dw/2e

(
w

i

)
pi(1− p)w−i ≤ pw/2(1− p)w/2

∑
i≥dw/2e

(
w

i

)
≤

≤ pw/2(1− p)w/22w =

= (2
√
p(1− p))w

that

Pre ≤
∑
w>0

Aw

(
2
√
p(1− p)

)w

,

where Aw denotes the number of codewords of weight w in C.

This proves the following theorem.

Theorem 2.3.5 The probablity Pre that a maximum likelihood decoding algorithm de-
codes a received word incorrectly, when a codeword from a linear code with weight enu-
merator A(z) has been transmitted, satisfies

Pre ≤ A
(
2
√
p(1− p)

)
− 1. (2.27)

2.4 Linear unequal error protection codes

There are applications where one wants to protect some data bits better than others. For
instance, an error in the sign or in the most significant bit in the binary representation
of a number is much more serious than in the least significant bit.

It will turn out that the extra protection that one can give to some of the information
bits, when using a linear code C, depends very much on the particular generator matrix
G that has been chosen.
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Definition 2.4.1 The separation vector s(G) = (s(G)1, s(G)2, . . . ,
s(G)k) of a generator matrix G of a k-dimensional linear code C in Vn(q) is defined by

s(G)i = min{w(aG) | a ∈ Vk(q), ai 6= 0}, 1 ≤ i ≤ k. (2.28)

It follows from this definition that two information vectors that differ in the i-th coordi-
nate give rise to codewords that differ in at least s(G)i coordinates. Indeed, if a and b are
elements in Vk(q) such that (ai − bi) 6= 0, then (a− b)G will have weight at least s(G)i.
It follows that aG and bG will have distance at least s(G)i. This observation proves the
following theorem.

Theorem 2.4.2 Let s(G) be the separation vector of a generator matrix G of a k-
dimensional linear code C in Vn(q). Then complete maximum likelihood decoding of a
received word r = aG+ e will yield the correct i-th information symbol ai, 1 ≤ i ≤ k, if
the error pattern e has weight at most b(s(G)i − 1)/2c.

Obviously, the minimum distance d of a linear code C is equal to the minimum of the
s(G)i’s, i.e. d = min1≤i≤k s(G)i.

A linear code that has a generator matrix G such that not all the coordinates in its
separation vector are equal is called a linear unequal error protection code. This will be
abbreviated to: a LUEP code.

Example 2.4.3 The matrix

G =

(
1 1 1 0
0 0 1 1

)

generates a binary [4, 2, 2] code with separation vector (3, 2). So a1 can still be determined
correctly, if a single error has been made.

By permuting the rows of the generator matrix (together with the same permutation
applied to the coordinates of the message vector a) one can obtain a generator matrix
G of the same code with the property:

s(G)1 ≥ s(G)2 ≥ · · · ≥ s(G)k.

From now on, we shall always assume that the separation vector is ordered in this way.

Different generator matrices of the same code may have separation vectors that cannot be
compared, e.g. (7,5,3) versus (6,5,5). Fortunately, every linear code C has a generator
matrix with the property that its separation vector is coordinatewise greater than or
equal to the separation vector of any other generator matrix of C.

Definition 2.4.4 A generator matrix G of a linear code C is called optimal if for every
generator matrix of C each coordinate of its separation vector is smaller than or equal
to the corresponding coordinate of s(G).
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Clearly, if a code C has several optimal generator matrices, they will all have the same
separation vector, called the separation vector of the code.

Of course different codes of the same length and dimension can exist that have incom-
parable separation vectors. For instance the matrices

G1 =

(
1 1 1 1 1 1 0
0 0 0 0 0 1 1

)
and

G2 =

(
1 1 1 1 1 0 0
0 0 0 1 1 1 1

)

generate 2-dimensional codes in V7 with optimal separation vectors (6, 2) resp. (5, 4).

To prove that each linear code has an optimal generator matrix, we need some notation.

Let C be a k-dimensional code in Vn(q) and letG be a generator matrix of C. The i-th row
of G will be denoted by g

i
, 1 ≤ i ≤ k, and the set of rows of G by R(G). Further C[w] is

defined as the set of codewords in C of weight at most w, so C[w] = {c ∈ C | w(c) ≤ w}.
Let < C[w] > be the linear span of the vectors in C[w]. Clearly,
<C[w]> is a linear subcode of C. Let R(G)[w] be the smallest subset of R(G) with a
linear span containing <C[w]>, i.e.

R(G)[w] = ∩ {X ⊂ R(G) | < C[w] > ⊂ <X>}.

Lemma 2.4.5 The generator matrix G of a k-dimensional code in Vn(q) satisfies

s(G)i ≤ w ⇔ g
i
∈ R(G)[w], (2.29)

for all 0 ≤ w ≤ n and 1 ≤ i ≤ k.

Proof:
⇒: If g

i
6∈ R(G)[w] then C[w] ⊂ <R(G) \ {g

i
}> and hence s(G)i > w.

⇐: If g
i
∈ R(G)[w] then C[w] 6⊂ <R(G) \ {g

i
}> . So,

C[w] ∩ (C\ <R(G) \ {g
i
}>) 6= ∅.

In other words, a codeword c of weight at most w exists such that αi 6= 0 in c =
∑k

i=1 αigi
.

So s(G)i ≤ w.

2

Lemma 2.4.6 The generator matrix G of a k-dimensional code in Vn(q) is optimal if
and only if <C[w]> = <R(G)[w]> for each 0 ≤ w ≤ n.

Proof:
⇒: By the definition of <R(G)[w]> one trivially has <C[w]> ⊂ <R(G)[w]>. Let
<C[w]> have rank l and let G′ be any generator matrix of C, whose last l rows generate
<C[w]> . It follows that s(G′)i > w, 1 ≤ i ≤ k − l. By the optimality of G we may
conclude that s(G)i > w, 1 ≤ i ≤ k− l, and thus that <C[w]> ⊃ <g

k−l+1
, · · · , g

k
> .
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It follows that <C[w]>=<R(G)[w]> .
⇐: Consider any other generator matrix G′ of C and let i be minimal such that s(G′)i >
s(G)i (if no such i exists, there is nothing to prove). Put w = s(G′)i− 1. From s(G′)1 ≥
. . . ≥ s(G′)i > w, it follows that C[w] ⊂ <g′

i+1
, . . . , g′

k
> and thus that <C[w]> ⊂ <

g′
i+1
, . . . , g′

k
> .

On the other hand, from s(G)k ≤ . . . ≤ s(G)i ≤ s(G′)i−1 = w and Lemma 2.4.5 it follows
that g

i
, . . . , g

k
∈ R(G)[w]. Combining these results we get the following contradiction:

g
i
, . . . , g

k
⊂ <R(G)[w]> =

<C[w]>⊂<g′
i+1
, . . . , g′

k
> .

2

The proof of Lemma 2.4.6 also tells us how to find an optimal generator matrix of a
linear code. Consider with the set of lowest weight codewords. Take any basis of the
linear span of these vectors and fill the bottom part of the generator matrix with these
basis vectors. Now take the set of lowest weight codewords, that are not in the span of
the rows of G yet, and look at the linear span of them and the current rows of G. Extend
the previous basis to a basis of this new linear span. And so on.

This algorithm proves the the following theorem.

Theorem 2.4.7 Any linear code has an optimal generator matrix.

If the lowest weight codewords in a linear code generate the whole code, one obviously
does not have a LUEP code.

Example 2.4.8 Consider the binary [8, 3, 3] code generated by the vectors (01010111),
(00101111) and (11100000). The lowest weight codewords have weight 3. Their linear
span has dimension 2; it is generated by the lower two rows in the matrix Gopt below.
The lowest weight not occurring in the linear span of these rows is 5. The weight five
vectors together with the rows in Gopt that are already filled in generate a 3-dimensional
space (the whole code). So the previous basis can be extended with one row to generate
this new linear span (the whole code). This gives the following optimal generator matrix

Gopt =

 0 1 0 1 0 1 1 1
1 1 1 0 0 0 0 0
1 0 0 1 1 0 0 0

 ,
with separation vector (5, 3, 3).

In the literature the interested reader can find extensive tables of optimal LUEP codes.

2.5 Problems

2.5.1 Consider the vector space {0, 1}6 with Hamming distance. What is the volume of
a sphere with radius 1?
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Is it possible to find 9 codewords at mutual distance at least 3?

2.5.2 Consider the BSC with error probability p. Four messages are encoded with words
in {0, 1}6. Maximize the minimum distance of such a code. Show that such a code
is unique and equivalent to a linear code. Give the weights of all the coset leaders
of this linear code. What is the probability that a transmitted codeword from this
code will be correctly decoded by a maximum likelihood decoding algorithm.

2.5.3 Construct a (4, 9, 3) code over the alphabet {0, 1, 2}.

2.5.4 Consider a binary channel, that has a probability of p = 0.9 that a transmitted
symbol is received correctly and a probability of q = 0.1 of producing an erasure (so
a ∗ is received). Construct a length-5 code of maximum cardinality that decodes
any received codeword with at most one erasure correctly.

What is the probability that a codeword transmitted over this channel is decoded
correctly?

2.5.5 Suppose that all the rows in the generator matrix G of a binary linear code C
have even weight. Prove that all codewords in C have even weight.

2.5.6 Let C be the binary [9, 5] code with parity check matrix

H =


0 0 0 1 1 0 1 1 0
1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
0 0 0 0 1 1 0 1 1

 .

Find the coset leader(s) of the cosets containing the following words:

a) 1 1 1 1 0 1 0 0 0
b) 1 1 0 1 0 1 0 1 1
c) 0 1 0 0 1 0 0 1 0

2.5.7 Let the generator matrix G of a binary, selfdual code C have the property that
each row has a weight that is a multiple of 4.

Prove that w(c) ≡ 0 (mod 4) for every codeword c in C.

2.5.8 Let C be a binary, selfdual [24, 12, 8] code in which all words have a weight divisible
by 4. Prove that the all-one vector is in the code C.

Determine the weight enumerator of C.
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2.5.9 Let H be the parity check matrix of a q-ary [n, k, d] code C with covering radius
ρ.

Prove that d is determined by the two properties: 1) each (d−1)-tuple of columns
of H is linearly independent and 2) H contains at least one d-tuple of linearly
dependent columns.

Prove that ρ is determined by the two properties: 1) each vector in Vn−k(q) can
be written as a linear combination of some ρ-tuple of columns of H and 2) there
exists at least one vector in Vn−k(q) that cannot be written as linear combination
of any ρ− 1 columns of H.

2.5.10 Let C be an (n, qk, d = n− k+ 1) code over GF (q), i.e. C is a MDS code. Prove
that C is systematic on every k-tuple of coordinates.

How many codewords of weight d does C have (as a function of n, k and q), if the
all-zero word is in C.

2.5.11 Show what kind of results the Gilbert, Singleton, and Hamming Bound give when
applied to q = 2, n = 16 and d = 3, 5, 7, 9.

Put all the results in the following table to compare them.

n = 16 d = 3 d = 5 d = 7 d = 9
Gilbert
Gilbert for
linear codes
Singleton
Hamming

2.5.12 Let H be a binary m× n matrix, constructed by taking each odd weight vector
of length m exactly once as column.

Give an example of such a matrix for m = 5.

Determine n as function of m.

Let C be the binary, linear code with H as parity check matrix. Determine words
at distance 0, 1 and 2 from C for your example.

Determine form ≥ 3 the dimension, the minimum distance and the covering radius
of C.

How many cosets of C have a unique coset leader and what is the weight of this
coset leader?

The other cosets have more coset leaders. How many and what is their weight?
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2.5.13 Let the parity check matrix H have as columns all vectors of length 5 (each
exactly once) that do not start with two zeros. So

H =


000000001111111111111111
111111110000000011111111
000011110000111100001111
001100110011001100110011
010101010101010101010101

 .

Let C be the code with H as parity check matrix. Decode the following three
words

000010100001010000100010
100010001000100010000001
010100100110000010100000.

How many cosets of C have a unique coset leader and what is the weight of this
coset leader?

The other cosets have more coset leaders. How many and what is their weight?

This code is used over a BSC with error probability p. What is the probability of
correctly decoding a received word?

What is the covering radius ρ of C.

Let x have distance 1 to C. To how many codewords does x have distance 2?

Let x have distance 2 to C. To how many codewords does x have distance 2?

2.5.14 Let C be a binary, linear, perfect, 1 error-correcting code of length n = 2m −
1, m ≥ 2. Define

Csh := {(c2, c3, . . . , cn) | (0, c2, . . . , cn) ∈ C}.

Determine the dimension and the parameters e, d and ρ of Csh.

For each x ∈ Vn−1(2) define

B(x, i) :=| {c ∈ Csh | d(x, c) = i} | . (1)

Derive an upper bound on B(x, 2), if d(x,Csh) = 1. (hint: translate the whole
vector space over x to get x in the origin; write down the words at distance 2 from
x.)

Derive an upper bound on B(x, 2), if d(x,Csh) = 2.

Derive an upper bound on∑
x,d(x,Csh)≥1(B(x, 1) +B(x, 2)). (2)
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Compute this sum exactly by substituting (1) into (2), followed by changing the
order of summation.

Compare the two answers. What is your conclusion for the upper bounds on
B(x, 2)?

2.5.15 Let C be the binary code generated by

G =


000000011111111 1001
000111100001111 0101
011001100110011 0011
101010101010101 0000

 .

Prove that C is a LUEP code. Determine its separation vector.

Give an optimal generator matrix of C.
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Chapter 3

Some code constructions

3.1 Making codes from other codes

In this section, a number of techniques to construct other codes from a given code will
be discussed.

Definition 3.1.1 Let C be a q-ary (n,M, d) code. The extended code Cext of C is
defined by

Cext = {(c1, c2, . . . , cn,−
n∑

i=1

ci) | c in C} (3.1)

So, the words in Cext are obtained from those of C by adding an overall parity check
symbol.

Clearly, in the binary case, all words in Cext will have an even weight. This shows that
if C is a binary (n,M, 2e+ 1) code, Cext will be a binary (n+ 1,M, 2e+ 2) code.

If G and H are the generator matrix, resp. parity check matrix of an [n, k, d] code C,
the generator matrix Gext and parity check matrix Hext of the extended code Cext are
given by:

Gext =

 G

∣∣∣∣∣∣∣∣∣∣
−∑n

j=1 g1j

−∑n
j=1 g2j
...

−∑n
j=1 gkj

 . (3.2)

and

Hext =


1 1 · · · 1 1

0

H
...
0

 . (3.3)
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Two ways of making a code one symbol shorter are given in the following definition:

Definition 3.1.2 By puncturing a code on a specific coordinate, one simply deletes that
coordinate in all codewords.

By shortening a code on a specific coordinate, say the j-th, with respect to symbol α,
one takes only those codewords that have an α on coordinate j and then deletes that j-th
coordinate.

Let C be a q-ary (n,M, d) code. Then on each coordinate at least one symbol will occur
at least dM/qe times. This proves the only non-trivial part in the next theorem.

Theorem 3.1.3 Let C be a q-ary (n,M, d) code with d ≥ 2. Then by puncturing a
coordinate one obtains an (n− 1,M,≥ d− 1) code.

If C is a q-ary (n,M, d) code, one can shorten on any coordinate with respect to the most
frequently occurring symbol on that coordinate to obtain an (n− 1,≥ dM/qe,≥ d) code.

The next technique of constructing a code from another one, will be restricted to binary
linear codes.

Let, without loss of generality, the top row, called c, of the generator matrix G of a
binary [n, k, d] code C, have weight d and let all the ones of c be permuted to the front,
i.e.

G =


1 1 · · · 1 0 0 · · · · · 0

G1 G2


c of weight d

.

Then the code generated by the restriction of the rows of G to the last n−d coordinates,
i.e. the code generated by G2, is called the residual code Cres of C with respect to c.

Theorem 3.1.4 Let C be a binary [n, k, d] code and let c be a codeword of weight d in C.
Then the residual code Cres of C with respect to c has parameters [n− d, k− 1,≥ dd/2e].

Proof: Consider any non-trivial linear combination of the last k−1 rows of G and write
it as (a1, a2) corresponding to G1 and G2. Clearly

w(a1) + w(a2) ≥ d,

but also, because of the distance to the top row,

(d− w(a1)) + w(a2) ≥ d.

Adding these two equations gives w(a2) ≥ dd/2e. So any non-trivial linear combination
of the rows of G2 has weight at least dd/2e. It follows that G2 has indeed rank k− 1 and
that the minimum distance of the code generated by G2, i.e. Cres, is at least dd/2e.

2
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As an example, consider the question of the existence of a binary [13, 6, 5] code. If it
existed, the residual code with respect to any minimum weight codeword would have
parameters [8, 5,≥ 3]. This however is impossible by the Hamming bound (Theorem
2.1.3). So, no binary [13, 6, 5] code exists. It is however possible to construct a non-
linear (13, 26, 5) code, but that construction will not be given here.

The above technique can easily be generalized to other fields than GF (2). One can also
define the residual code of C with respect to a codeword of weight more than d. Both
generalizations are left as an exercise to the reader.

The following corollary is a direct consequence of Theorem 3.1.4 and the fact that n′ ≥ d′

in a [n′, 1, d′] code.

Corollary 3.1.5 (The Griesmer bound) Let C be an [n, k, d] binary linear code.
Then

n ≥
k−1∑
i=0

dd/2ie. (3.4)

The next construction will be needed in Section 3.3.

Theorem 3.1.6 ((u,u+v) construction) Let C1 be a binary (n,M1, d1) code and C2

a binary (n,M2, d2) code. Then the code C defined by

C = {(u, u+ v) | u in C1, v in C2} (3.5)

has parameters (2n,M1M2, d) with d = min{2d1, d2}.

If C1 and C2 are both linear, then so is C.

Proof: The length and cardinality of C are obvious. So the only thing left to check is
the minimum distance of C.

Let (u1, u1 + v1) and (u2, u2 + v2) be two distinct words in C. If v1 = v2, the distance
between these two codewords is obviously equal to twice the distance between u1 and
u2, so the distance is at least 2d1.

If v1 6= v2, then on each of the at least d2 coordinates where v1 and v2 differ, either also
u1 and u2 differ or u1 +v1 and u2 +v2 differ. So in this case (u1, u1 +v1) and (u2, u2 +v2)
have distance at least d2.

The proof of the linearity of C in case that both C1 and C2 are linear is straightforward.

2

The next construction also makes use of two codes, but now over different fields.

Let C1 be a q-ary (n1,M1, d1) code and let C2 be a M1-ary (n2,M2, d2) code. Note that
the alphabet size of code C2 is equal to M1, the cardinality of C1. So, one can replace
each element in this alphabet of size M1 by a unique codeword in C1. Replacing each
coordinate in the codewords of C2 by the corresponding vector in C1 results in a q-ary
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code that is called the concatenated code of the inner code C1 and the outer code C2.
The following theorem is now obvious.

Theorem 3.1.7 (Concatenated code) Let C1 be a q-ary (n1,M1, d1) code and C2 be
a M1-ary (n2,M2, d2) code. Then the concatenated code of the inner code C1 and outer
code C2 is a q-ary code with parameters (n1n2,M2, d1d2).

3.2 The Hamming codes

Equation (2.14) can be interpreted as follows: a word c is a codeword in a linear code C
if and only if (abbreviated in the sequel to “iff”) the coordinates of c give a dependency
relation between the the columns of the parity check matrix H of C.

In particular the minimum distance d of a linear code will satisfy d ≥ 2 iff H does not
contain the all-zero column. Similarly, d ≥ 3 iff H does not contain two columns that
are linearly dependent (the dual of such a code is sometimes called a projective code).
In general, C will have minimum distance ≥ d iff each d − 1-tuple of columns in H
is linearly independent. If at least one d-tuple of columns is linearly dependent, the
minimum distance will be exactly equal to d.

In view of the above, we now know that the length of a q-ary [n, k, 3] code is upper
bounded by the maximum number of pairwise linearly independent vectors in Vr(q),
where r = n − k is the redundancy of C. Now Vr(q) has qr − 1 non-zero vectors. They
can be divided into (qr − 1)/(q − 1) groups of size q − 1, each consisting of a non-zero
vector in Vr(q) together with all its non-zero scalar multiples. The extreme case that
n = (qr − 1)/(q − 1) leads to the following definition.

Definition 3.2.1 (Hamming code) The q-ary Hamming code of
length n = (qr − 1)/(q − 1) and redundancy r is defined by the parity check matrix that
consists of (a maximum set of) columns that are all pairwise linearly independent.

It is denoted by Hr(q). The minimum distance of Hr(q) is equal to 3.

The reason for writing “the” Hamming code instead of “a” Hamming code simply is that
all q-ary Hamming codes of the same length are equivalent to each other.

Example 3.2.2 The binary [7, 4, 3] Hamming code H3(2) has parity check matrix

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .
The columns are the binary representation of the numbers 1, 2, . . . , 7.

Example 3.2.3 The ternary [13, 10, 3] Hamming code H3(3) has parity check matrix

H =

 0 0 0 0 1 1 1 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1 2 2 2
1 0 1 2 0 1 2 0 1 2 0 1 2

 .
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The examples above give a systematic way of making the parity check matrix of a
Hamming code: Take only the columns, whose first non-zero entry, when reading from
the top to the bottom, is a 1.

Theorem 3.2.4 The q-ary [n = (qr − 1)/(q− 1), k = n− r, 3] Hamming code is perfect.

Proof: The volume of a sphere of radius 1 around a codeword is 1+n(q−1) = qr = qn−k.
From

|C|qn−k = qkqn−k = qn

we have that equality holds in the Hamming bound (Theorem 2.1.3). So the covering
radius of the Hamming code is also 1. The statement now follows from Definition 2.1.6.

2

Decoding the Hamming code is extremely simple. Let r be a received word. Compute its
syndrome s = HrT . Definition 3.2.1 implies that s is the scalar multiple of some column
of the parity check matrix, say α times the j-th column. Now simply subtract α from
the j-th coordinate to find the closest codeword. Indeed, the vector (r1, . . . , rj−1, rj −
α, rj+1, . . . , rn) has syndrome 0.

The fact that a code is perfect implies that its weight enumerator is uniquely determined
by its parameters. We shall demonstrate this for the binary Hamming code.

Consider one of the
(

n
w

)
words of weight w in Vn, say x. It is either a codeword in the

[n = 2r − 1, n− r, 3] Hamming code, or it lies at distance 1 from a unique codeword, say
from c. In the latter case, c has either weight w + 1 and x can be obtained from c by
replacing one of its w + 1 one-coordinates into a 0, or c has weight w − 1 and x can be
obtained from c by replacing one of its n− (w− 1) zero-coordinates into a 1. Since each
of these coordinate changes yield different words of weight w (otherwise d = 3 cannot
hold), we have proved that the weight enumerator A(z) of the binary Hamming code of
length n = 2r − 1 satisfies the recurrence relation(

n

w

)
= Aw + (w + 1)Aw+1 + (n− w + 1)Aw−1, 0 ≤ w ≤ n. (3.6)

With A0 = 1 and A1 = A2 = 0, one can now easily determine the whole weight enumer-
ator recursively. For instance w = 2 yields

(
n
2

)
= 3A3, i.e. A3 = n(n− 1)/6.

With the standard technique of solving recurrence relations one can find a closed expres-
sion for A(z). It is however much easier to derive this with the MacWilliams relations.

The dual code of a Hamming code is called the Simplex code. In Examples 3.2.2 and 3.2.3
one can see that all rows of the parity check matrices (thus of the generator matrices
of the corresponding Simplex codes) have weight qr−1. This turns out to hold for all
non-zero codewords in the Simplex code.
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Theorem 3.2.5 All non-zero codewords in the Simplex code of length (qr − 1)/(q − 1)
have weight qr−1, so the Simplex code has weight enumerator

A(z) = 1 + (qr − 1)zqr−1

. (3.7)

Proof: Suppose that the Simplex code has a codeword of weight w with w > qr−1, say c.
Without loss of generality we may assume that the first w coordinates of c are non-zero
and that they all are equal to 1 (otherwise consider an equivalent Simplex code, which
will have the same structure).

Use c as top row of a new generator matrix of this code. The first w (> qr−1) columns of
this generator matrix all start with a 1 and are then followed by r− 1 other coordinates.
However there are only qr−1 different q-ary (r − 1)-tuples, so at least two of the first
w > qr−1 columns are identical to each other. Since this generator matrix is also the
parity check matrix of the Hamming code, we have a contradiction with Definition 3.2.1.

If the Simplex code of length (qr−1)/(q−1) has a codeword of weight w with w < qr−1,
a similar contradiction can be obtained by considering the columns where this codeword
has its zero-coordinates.

2

The next theorem now immediately follows from the MacWilliams relations (Theorem
2.3.4).

Theorem 3.2.6 The weight enumerator of the q-ary Hamming code of length n =
(qr − 1)/(q − 1) is given by A(z) =

1
qr

{
(1 + (q − 1)z)n + (qr − 1)(1− z)qr−1

(1 + (q − 1)z)n−qr−1
}
.

(3.8)

3.3 Reed-Muller codes

The final class of linear codes in this chapter dates back to a paper by D.E. Muller in
1954. In the same year I.S. Reed proposed a decoding algorithm for this code. Although
this class of codes can be generalized to other fields, we shall only discuss the binary
case.

In this section we consider binary polynomials f = f(x1, x2, . . . , xm) in m variables,
where m is some fixed integer. Since only binary values will be substituted in f and
x2 = x for x = 0 and 1, each variable will only occur to the power at most 1. Of course
terms like x2x4x5 can occur. If f contains a term which is the product of r variables
but no term which is a product of ≥ r + 1 variables, f is said to have degree r. Clearly
0 ≤ r ≤ m.
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Any polynomial f of degree ≤ r can be written as follows:

f(x1, x2, . . . , xm) =
r∑

l=0

∑
1≤i1<i2<···<il≤m

ai1i2···ilxi1xi2 · · ·xil , (3.9)

where a∅ denotes the constant term.

For example, 1 + x1 + x3 + x1x2 + x2x3x4 is a polynomial of degree 3.

Now, for the m variables x1, x2, . . . , xm one can substitute all the n = 2m points of Vm to
obtain all function values. For this purpose, we shall choose the lexicographical ordering
of the n points of Vm, where the first coordinate is the most significant. The successive
points of Vm are named u0, u1, . . . , un−1.

For example, when m = 4, one gets in this way:

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Definition 3.3.1 The r-th order Reed-Muller code RM(r,m) of length n = 2m is de-
fined by

RM(r,m) = {(f(u0), f(u1), . . . , f(un−1)) | degree(f) ≤ r}. (3.10)

The vector c = (f(u0), f(u1), . . . , f(un−1)) is often called the characteristic vector of f.

ClearlyRM(0,m) ⊂ RM(1,m) ⊂ · · · ⊂ RM(m,m) and all these codes are linear. Also
it follows from the definition that RM(0,m) is the repetition code of length n = 2m.

Example 3.3.2 The polynomial f(x1, x2, x3, x4) = 1 + x1 + x3 + x1x2 + x2x3x4 gives
rise to the following codeword in RM(3, 4) :

1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 1

Consider a vector b in Vm. The polynomial (x1−b1 +1) (x2−b2 +1) · · · (xm−bm +1) has
degree m, is equal to 1 for x = b and is zero otherwise. It follows that each weight-one
vector in Vn is an element of RM(m,m). By the linearity of the Reed-Muller codes, we
may conclude that each vector in Vn lies in some Reed-Muller code. However there are

exactly 2n vectors in Vn, just as there are 21+(m
1 )+(m

2 )+···+(m
m) = 22m

= 2n polynomials of
the form (3.9). It follows that each polynomial f(x1, x2, . . . , xm) gives rise to a unique
word of length n = 2m and the other way around.

Now that we have a 1-1 correspondence between vectors of length n = 2m and poly-
nomials f(x1, x2, . . . , xm), we shall identify these two and say that f is in RM(r,m),
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when f has degree less than or equal to r. Similarly we shall say that two polynomials
are orthogonal to each other, when we really mean that their characteristic vectors are
orthogonal to each other.

The reasoning above also proves that the dimension of RM(r,m) is equal to the number

of choices of the coefficients in (3.9), i.e. 1 +
(

m
1

)
+ · · ·+

(
m
r

)
.

Theorem 3.3.3 The r-th Reed-Muller code RM(r,m) of length n = 2m has parameters

[n,
∑r

l=0

(
m
l

)
, 2m−r].

Proof: It remains to show that RM(r,m) has minimum distance 2m−r. That it cannot
be more follows from the fact that the polynomial x1x2 · · ·xr is in RM(r,m) and that
its function value is 1 iff x1 = x2 = . . . = xr = 1 (independent of values of xr+1, . . . , xm),
so its weight is 2m−r.

That the minimum distance is at least 2m−r will follow with an induction argument from
Theorem 3.1.6. For m = 1, the statement is trivial.

By splitting the terms in a polynomial f(x1, x2, . . . , xm) in RM(r,m) into those
that do contain x1 and those that do not, one can write f as p(x2, x3, . . . , xm) +
x1q(x2, x3, . . . , xm), with p in RM(r,m − 1) and q in RM(r − 1,m − 1). Also each
choice of p in RM(r,m − 1) and q in RM(r − 1,m − 1) gives rise to a unique f in
RM(r,m).

Now p corresponds to a codeword u in RM(r,m−1), which by the induction hypothesis
has minimum distance d1 = 2m−r−1. Similarly, q corresponds to a codeword v inRM(r−
1,m− 1), with minimum distance d1 = 2m−r. Moreover p+ x1q has characteristic vector
(u, u+ v).

It follows from the above that RM(r,m) is the result of the (u, u + v) construction
in Theorem 3.1.6 applied to C1 = RM(r,m − 1) and C2 = RM(r − 1,m − 1). The
same theorem now says that RM(r,m) has minimum distance greater than or equal to
min{2d1, d2}
= min{2 · 2m−r−1, 2m−r} = 2m−r.

2

In Table 3.1 one can find the characteristic vectors of all possible terms in a polynomial
in x1, x2, x3 and x4. They are listed in order of non-decreasing degree. As a result the top
row generates RM(0, 4), the top 1 +

(
4
1

)
rows generate RM(1, 4), etc. Note that row

x1x2 is just the coordinate-wise product of rows x1 and x2. The same holds for the other
higher degree terms. This implies in particular, that the innerproduct of two monomials
is just the weight of their product. Since f(b) = g(b) = 1 if and only if (fg)(b) = 1, the
same is true for all polynomials: the innerproduct of two polynomials f and g is equal
to the weight of their product fg.

The generator matrix G of RM(1,m) has as rows the characteristic vectors of
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3.3. REED-MULLER CODES

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
x1x2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
x1x3 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
x1x4 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
x2x3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
x2x4 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
x3x4 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
x1x2x3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
x1x2x4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
x1x3x4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
x2x3x4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
x1x2x3x4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 3.1: The monomials in x1, x2, x3, x4 generate V16.

1, x1, x2, . . . , xm. So the first row is 1. The columns of G are, apart from an initial
1, the vectors u0, u1, . . . , un−1. If one leaves out the first row and column in G one gets
the generator matrix of the Simplex code. Equivalently, RM(1,m) is the dual code of
the extended Hamming code.

Since each monomial of degree less thanm has even weight, and since they spanRM(m−
1,m), it follows that all codewords inRM(m−1,m) have even weight. The dimension of

RM(m−1,m) is equal to
∑m−1

l=0

(
m
l

)
= 2m−1 = n−1. We conclude that RM(m−1,m)

is the even weight code and thus that RM(m− 1,m) is the dual of RM(0,m).

It turns out, in general, to be quite easy to determine the dual code of a Reed-Muller
code.

Theorem 3.3.4 The dual code of RM(r,m) is RM(m− r − 1,m).

Proof: Since n − ∑r
l=0

(
m
l

)
=
∑m

l=0

(
m
l

)
− ∑r

l=0

(
m
l

)
=
∑m

l=r+1

(
m
l

)
=
∑m−r−1

l=0

(
m
l

)
, we

have that RM(m− r − 1,m) has the same cardinality as the dual code of RM(r,m).

The statement now follows from the fact that each element f in RM(m −r − 1,m)
is orthogonal to each element g in RM(r,m). Indeed, f has degree at most r and g
each vector has degree at most m − r − 1, so their product is in RM(m − 1,m). But
RM(m− 1,m) is the even weight code, so fg has even weight. This implies that f and
g are orthogonal to each other.

2

Since we already know that RM(1,m) is the dual code of the extended Hamming code,
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we now also know that RM(m− 2,m) is equal to the extended Hamming code.

The next property of Reed-Muller codes shows that they have even more internal struc-
ture. In Chapter 2, two codes that could be obtained from each other by a coordinate
permutation and by alphabet permutations for each coordinate were called equivalent.
To preserve linearity, for linear codes we do not allow all alphabet permutations but just
those that leave the finite field structure intact. For q = 2 this means that we only allow
coordinate permutations.

It turns out that some coordinate permutations combined with alphabet/field permu-
tations, when applied to a code, yield the very same code. This means that the set of
codewords is mapped in a 1-1 way to the set of codewords. Such permutations are called
automorphisms of a code. The automorphisms of a code C form a group denoted by
Aut(C).

To describe a class of automorphisms of the Reed-Muller code of length n = 2m it
will prove to be useful to index the coordinates of the codewords c = (c0, c1, . . . , cn−1)
with the vectors u0, u1, . . . , un−1 in Vm. An invertible, affine transformation of Vm i.e. a
mapping of the form x→ xA+b, where A is a non-singular m×m matrix and b is in Vm,
obviously is a 1-1 mapping of Vm to Vm. So, an invertible, affine transformation of Vm

applied to the coordinates of the codewords of a Reed-Muller code yields an equivalent
code.

For instance, when m = 4 (n = 24 = 16) the coordinate transformation applied to
c = (c0, c1, . . . , c15) given by

x1

x2

x3

x4

 →


1 1 1 0
1 0 0 1
0 1 1 0
1 1 0 1



x1

x2

x3

x4

+


1
0
0
1


maps (0, 0, 0, 0) to (1, 0, 0, 1) so c0 will appear at coordinate 9. Also (1, 0, 0, 0) will be
mapped to (0, 1, 0, 0) and thus c8 will appear at coordinate 4. Etc.

The nice thing is that applying these invertible, affine transformations to a Reed-Muller
code will not just result in an equivalent code, but in the original code itself!

Theorem 3.3.5 The automorphism group Aut(RM(r,m)) of RM(r, m) contains the
group of invertible, affine transformations of Vm.

Proof: Applying an invertible, affine transformations to a codeword f of degree at most
r, amounts to considering the word f(xA + b). Clearly f(xA + b) also has degree at
most r, since each variable xi in f is simply replaced by another linear expression (to be
precise by: ai1x1+ai2x2+ . . .+aimxm+bi). So f(xA+b) is also a codeword in RM(r,m).
Since x → xA + b defined a permutation of the coordinates, it follows that it is indeed
an automorphism of RM(r,m).

2
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3.3. REED-MULLER CODES

The above theorem is a very important tool in the study of the weight structure of
Reed-Muller codes, especially those of order 2. For instance the codeword

f(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2 + x3 + 1

in RM(2, 4) can be rewritten as

(x1 + x3 + 1)(x2 + x3 + x4) + x3x4 + x3 + x4 + 1,

so it is equivalent under the invertible, affine transformation

x1 + x3 + 1 → x1

x2 + x3 + x4 → x2

x3 → x3

x4 → x4

to

x1x2 + x3x4 + x3 + x4 + 1.

This polynomial in turn can be rewritten as x1x2 + (x3 + 1)(x4 + 1), so it is equivalent
to x1x2 + x3x4. Now, x1x2 + x3x4 is equal to 1 iff one of the terms is 1 and the other 0.
It follows that x1x2 + x3x4 and thus f has weight 2 · 1 · 3 = 6.

We end this section by describing a decoding algorithm for the Reed-Muller code. Since
RM(r,m) has minimum distance 2m−r, we want to correct t errors for all t < 2m−r−1.

Consider the term xm−r+1xm−r+2 · · ·xm in a codeword f inRM(r,m) (see (3.9)). Clearly
it has innerproduct 1 with each of the 2m−r words (x1 + u1)(x2 + u2) · · · (xm−r + um−r).
Indeed, there is only coordinate where both terms are equal to one, namely (u1 +1, u2 +
1, . . . , um−r + 1, 1, 1, . . . , 1). Also, all other terms in f are orthogonal to (x1 + u1)(x2 +
u2) · · · (xm−r +um−r), because their product (which will miss at least one of the variables
xi,m− r + 1 ≤ i ≤ m) is in RM(m− 1,m) and thus has even weight.

It follows that the coefficient am−r+1,m−r+2,···,m of xm−r+1xm−r+2 · · ·xm in a codeword f
in RM(r,m) is equal to the innerproduct of f with each of the 2m−r words (x1+u1)(x2+
u2) · · · (xm−r + um−r).

Let c be the characteristic vector of f . What we have shown above translates into the
2m−r equations:

am−r+1,m−r+2,···,m = c0 + c1 + · · · + c2r−1.
am−r+1,m−r+2,···,m = c2r + c2r+1 + · · · + c2.2r−1.

...
...

...
am−r+1,m−r+2,···,m = c2m−2r + c2m−2r+1 + · · · + c2m−r.2r−1.

(3.11)

For instance, the choice of u1 = u2 = · · · = um−r = 1 will give the equation that
am−r+1,m−r+2,···,m is equal to the modulo 2 sum of those coordinates of c where x1 = x2 =
· · · = xm−r = 0 i.e. coordinates 0, 1, . . . , 2r − 1.
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So, all the right hand sides in (3.11) will yield the same value, which in fact is equal to
am−r+1,m−r+2,···,m.

Now, suppose that r = c + e is a received word, with c in RM(r,m) and suppose that
e has weight t, i.e. that t errors have been made. Substitution of the coordinates of r in
the right hand sides of (3.11) will yield 2m−r estimates for am−r+1,m−r+2,···,m of which at
most t are incorrect and at least 2m−r − t are correct, since no coordinate occurs more
than once. Hence, if t < 2m−r−1 the majority of the equations in (3.11) will yield the
right value of am−r+1,m−r+2,···,m.

To find a similar set of equations for the other coefficients of the degree-r terms in a
codeword, we need to apply the appropriate code automorphism to (3.11). For instance
to find am−r,m−r+2,···,m the transformation xm−r ↔ xm−r+1 will yield the right 2m−r

equations.

If the coefficients of all the terms of degree r in f have been found, the first step of the
decoding algorithm is done. Indeed the decoding problem is now reduced to the decoding
of RM(r − 1,m)

The above decoding algorithm is an example of a so-called multi-step, majority-logic
decoding algorithm. The term “majority-logic” reflects the fact that a majority rule
has been applied in the decoding process, just as “multi-step” reflects the fact that this
procedure had to be applied several times.

3.4 Problems

3.4.1 Construct a [8, 4, 4] binary code with the (u, u+ v)-construction.

3.4.2 Generalize Theorem 3.1.4 to residual codes with respect to codewords of weight
w, w ≥ d.

3.4.3 Generalize Theorem 3.1.4 to q-ary codes.

3.4.4 Use Theorem 3.1.4 to prove the non-existence of a binary [101, 7, 50] code.

3.4.5 Let G be a generator matrix of a binary, linear [n, k, d] code C. Let the covering
radius ρ of C satisfy ρ < d and let x be a word at distance ρ to C. Determine the
parameters [N,K,D] of the code C∗ generated by

← d− ρ →

 0 G

1 · · · · · · 1 x

 .
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3.4.6 Let C∗ be an [n+ s, k + 1, d] code with generator matrix G∗. Suppose that some
non-zero column s in G∗ occurs s times with s < d.

Construct an [n, k, d] code with covering radius at least d− s.

3.4.7 Let x be a codeword of weight w in the dual code of a binary [n, k, d] code C.
Shorten C with respect to the symbol 0 on all the coordinates where x is 1.

Prove that one obtains an [n− w,≥ k − w + 1,≥ d] code.

3.4.8 Give the weight enumerator A(z) of the binary Hamming code of length 31. Com-
pute Ai

(31
i )/25

for i = 5, 10 and 15.

3.4.9 Derive a recurrence relation for the weight enumerator of a binary (23, 212, 7) code
and a ternary (11, 36, 5) code containing the all-zero vector (hint: first show that
these codes are perfect).

3.4.10 Use the preceding problem to argue that puncturing a binary evenweight [24, 12, 8]
code on each of its coordinates results in [23, 12, 7] codes which all have the same
weight enumerators.

Prove that this property implies that in this punctured code the number of code-
words of weight 2i− 1 and that of weight 2i are related, 0 ≤ i ≤ 12. What is this
relation?

Derive the weight enumerator of the [23, 12, 7] code, obtained by puncturing a
[24, 12, 8] code with weight enumerator 1 + 759z8 + 2576z12 + 759z16 + z24.

3.4.11 Suppose that a (90, 278, 5) binary code C exists. Prove that C has to be perfect.

Derive a recurrence relation for the weight enumerator A(z) of C.

Without loss of generality one may assume that C contains 0. Why? Determine
A0, A1, . . . , A7. Why should these numbers be integers and what is your conclusion
about the existence of C?

3.4.12 Prove that the Boolean function

∑
1≤i<j≤m

aijxixj +
∑

1≤i≤m

bixi + c

can be mapped into the the Boolean function

x1x2 +
∑

3≤i<j≤m a
′
ijxixj +

∑
3≤i≤m b

′
ixi + c′ (∗)

by an invertible affine transformation x→Ux + u (i.e. U is invertible) as long as
at least one of the aij’s is not equal to 0.

Which standard forms can be obtained for the elements ofRM(2, m) if one applies
(∗) repeatedly?
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Which weights do occur in RM(2, 5)?

Show that RM(2, 5) is a selfdual code. Describe an easy way to find the weight
enumerator of RM(2, 5) (the actual calculations do not have to be made).

3.4.13 Let c = a∅ +
∑

1≤i≤5 aixi +
∑

1≤i<j≤5 ai,jxixj be a codeword in RM(2, 5) and let
r = c+ e with w(e) ≤ 3.

Write down 8 parity check equations that can be used (by a majority decoding
technique) to determine

a1,3.

Write down 16 parity check equations that can be used to determine

a3

in c′ = c−∑1≤i<j≤5 ai,jxixj.

Write down 32 parity check equations that can be used to determine

a∅

in c′′ = c′ −∑1≤i≤5 aixi.
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Chapter 4

Cyclic codes and Goppa codes

4.1 Introduction; equivalent descriptions

In Theorem 3.3.5 it was proved that certain coordinate permutations do map the code
onto itself. By assuming such internal structure, it may be easier to find good codes. In
this chapter we shall study linear codes that are invariant under a cyclic shift.

This cyclic structure makes these codes quite easy to implement with simple logical
circuits.

Definition 4.1.1 A code C is called cyclic if it is linear and for each (c0, c1, c2, . . . , cn−1)
in C also (cn−1, c0, c1, . . . , cn−2) is in C.

The Hamming code of length seven in Example 3.2.2 is equivalent to the code C with
parity check matrix:

H =

 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 . (4.1)

One can easily check this by observing that the columns of the paritycheck matrices of
both codes are a permutation of each other.

It is also a small effort to check that the non-zero codewords in C⊥ consist of the seven
cyclic shifts of the top row in H.

It follows that if some vector is orthogonal to all words in C⊥, so are all its cyclic shifts.
So also C is a cyclic code. Indeed it consists of 0, 1 and all the cyclic shifts of the vectors
( 1 1 0 1 0 0 0 ) and ( 1 1 1 0 0 1 0 ).

The reader may already have noticed that the coordinates in Definition 4.1.1 are num-
bered from 0 to n− 1. The reason is that powerful algebraic tools will be available, once
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we have identified the words in Vn(q) with q-ary polynomials over GF (q) in the following
way:

(c0, c1, c2, . . . , cn−1) ↔ c0 + c1x+ . . .+ cn−1x
n−1. (4.2)

So, instead of writing c is in C, we shall often write c(x) is in C.

Notice that multiplying c(x) with x almost gives the polynomial corresponding to the
cyclic shift of c. To really get this cyclic shift, one has to reduce xc(x) modulo xn − 1,
i.e. replace xc(x) by its remainder after division by xn − 1. Indeed:

xc(x) ≡ x(c0 + c1x+ . . .+ cn−1x
n−1) ≡

≡ c0x+ c1x
2 + . . .+ cn−2x

n−1 + cn−1x
n ≡

≡ cn−1 + c0x+ c1x
2 + . . .+ cn−2x

n−1 (mod xn − 1).

So, instead of considering the set of all q-ary polynomials in x, usually denoted by
GF (q)[x], we only work with the set of the residues of these polynomials modulo xn− 1.
This new set is denoted by GF (q)[x]/(xn − 1), to suggest the division by xn − 1.

We conclude that a cyclic shift in Vn(q) corresponds to a multiplication by x in
GF (q)[x]/(xn − 1). Of course, there is no reason to limit us to multiplications by x.
Multiplication with any polynomial is now possible; just divide the product by xn − 1
and take the remainder. The mathematical terminology for this is: GF (q)[x]/(xn − 1)
is a ring.

Since a cyclic code is linear by definition, with c(x) in a cyclic code C, not only xc(x)
is in C, but also x2c(x), x3c(x), etc., and all their linear combinations as well. In short,
each multiple u(x)c(x) (mod xn − 1) is in C.

The next theorem shows that a cyclic code in Vn(q) can be described by a single poly-
nomial in GF (q)[x]/(xn − 1).

Theorem 4.1.2 Let C be a cyclic code in Vn(q). Then there exists a unique monic
polynomial g(x) over GF (q) dividing xn − 1 with the property

c(x) is in C iff g(x) divides c(x). (4.3)

The polynomial g(x) is called the generator polynomial of C.

Proof: Let g(x) be the monic polynomial of lowest degree among the non-zero ele-
ments in C. We have already seen that all polynomial-multiples u(x)g(x) of g(x) with
degree(u(x)) + degree(g(x)) < n are also in C.

It remains to show that any codeword c(x) in C, and thus also xn− 1 which is 0 modulo
xn − 1, is a multiple of this g(x).

Divide c(x) by g(x), so write c(x) = u(x)g(x)+r(x), where degree(r(x)) < degree(g(x)).
With g(x) in C, also u(x)g(x) is in C. Since c(x) is in C too, the linearity of C implies
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that also r(x) is in the code C. But g(x) is the monic polynomial of lowest degree among
all the non-zero elements in C. We conclude that r(x) = 0 and thus that c(x) = u(x)g(x).

2

In GF (q)[x]/(xn − 1) there are more polynomials with property (4.3). See, for instance,
Problem 4.6.8. Only g(x) has the additional property that it divides xn − 1.

The factorization of x7 − 1 over GF (2) into irreducible factors is given by

x7 − 1 = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1).

The cyclic [7, 4, 3] Hamming code, at the beginning of this section has generator poly-
nomial x3 + x+ 1.

The cyclic [7, 6, 2] even weight code has generator polynomial x+ 1.

The cyclic [7, 1, 7] repetition code has generator polynomial (x3 + x+ 1)(x3 + x2 + 1) =
x6 + x5 + x4 + x3 + x2 + x+ 1.

Since x7 − 1 has three irreducible factors over GF (2) there are 23 distinct, binary cyclic
codes of length 7. Some of these are equivalent.

Theorem 4.1.3 Let C be a k-dimensional, cyclic code in Vn(q) with generator polyno-
mial g(x). Then the degree of g(x) is equal to n− k.

Write g(x) = g0 + g1x+ . . .+ gn−kx
n−k. Then a generator matrix G for C is given by:

G =



g0 g1 · · · · · · gn−k 0 0 · · · 0
0 g0 g1 · · · · · · gn−k 0 · · · 0
0 0 g0 g1 · · · · · · gn−k · · · 0
...

. . . . . . . . .
...

0 0 · · · 0 g0 g1 · · · · · · gn−k

 . (4.4)

Proof: Let the degree of g(x) be l. Then the (n − l) × n matrix G∗ with as rows the
codewords xig(x), 0 ≤ i < n− l, has rank n− l, because g(x) is monic.

Since each codeword must be divisible by g(x), it can be written as u(x)g(x). But each
codeword also has degree less than n, so it can be written as u(x)g(x) with degree u(x)
less than n− l. In other words, each codeword is a linear combination of the rows of G∗.
Since C has dimension k, we conclude that k = n− l and that G∗ = G.

2

To encode information sequence a(x) = a0 + a1x + . . . + ak−1x
k−1 one can of course

multiply G by (a0, a1, . . . , ak−1), but a faster way is by means of the alternative
generator matrix G′ = (PIn−k), that can easily be obtained from G by elemen-
tary row operations. Compute a(x)xn−k and divide the result by g(x). Let r(x) be
the remainder (of degree less than n − k), so r(x) ≡ a(x)xn−k (mod g(x).) Then
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c = (−r0,−r1, · · · ,−rn−k−1, a0, a1, · · · , ak−1) is the encoding of a(x). Indeed, c(x) =
−r(x) + a(x)xn−k ≡ −r(x) + r(x) ≡ 0 (mod g(x)) and this c(x) obviously is the encod-
ing of a(x) by means of G′.

From Theorem 4.1.2 we know that the generator polynomial g(x) of a cyclic code C
in Vn(q) must divide xn − 1. Let h(x) be the quotient, so let xn − 1 = g(x)h(x). This
polynomial h(x) gives an alternative way to describe cyclic codes.

Theorem 4.1.4 Let C be a cyclic code in Vn(q) with generator polynomial g(x). Let
h(x) = (xn − 1)/g(x). Then, in GF (q)[x]/(xn − 1),

c(x) is in C iff c(x)h(x) = 0. (4.5)

The polynomial h(x) is called the parity check polynomial of C.

Proof: ⇒ If c(x) is in C it can be written as a(x)g(x). So c(x)h(x) = a(x)g(x)h(x) =
a(x)(xn − 1) = 0 in GF (q)[x]/(xn − 1).

⇐ If c(x)h(x) = 0 in GF (q)[x]/(xn−1) one has that xn−1 divides c(x)h(x), i.e. g(x)h(x)
divides c(x)h(x) and thus that g(x) divides c(x).

2

Since xn − 1 ≡ 0 (mod xn − 1), comparing the coefficient of xl, 0 ≤ l < n, in both sides
of g(x)h(x) ≡ 0 (mod xn − 1) will give the following equation:

n−1∑
i=0

gihl−i = 0,

where the indices have to be taken modulo n. In this summation, the terms 0 ≤ i ≤ l
give the coefficient of xl in g(x)h(x) and the terms l + 1 ≤ i < n give the coefficient of
xl+n in g(x)h(x), which reduces to xl modulo xn − 1.

It follows (by taking l = i+ j) that each shift (gi, gi+1, . . . , gn−1, g0, . . . , gi−1), 0 ≤ i < n,
of g(x) is orthogonal to each vector (hj, hj−1, . . . , h0, hn−1 . . . , hj+1), 0 ≤ j < n. Let C
have dimension k, so g(x) has degree n−k and h(x) has degree k. Then, the above shows
that C has the following parity check matrix:

H =



0 · · · 0 0 hk · · · · · · h1 h0

0 · · · 0 hk · · · · · · h1 h0 0
... · · · ...
... · · · ...
hk · · · · · · h1 h0 0 · · · 0 0

 . (4.6)

The matrix H above also generates a cyclic code. The generator polynomial of this code
(which is C⊥) is 1

h0
(hk + hk−1x+ · · ·+ h1x

k−1 + h0x
k) = 1

h0
xkh(1/x).

We conclude that the dual code of a cyclic code in Vn(q), with generator polynomial
g(x), is also cyclic with generator polynomial xkh(1/x), where xn − 1 = g(x)h(x). This
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dual code is equivalent to the cyclic code generated by h(x) (just take all columns in
reverse order).

To be able to say something about the minimum distance of cyclic codes, it will be
necessary to consider an extension field of GF (q) in which xn−1 factors completely into
linear factors.

Consider for instance GF (8). It can be viewed as GF (2)[x]/(x3 + x + 1), i.e. the set of
binary polynomials in x reduced modulo the irreducible polynomial x3 + x + 1. Equiv-
alently, let α be a zero of x3 + x + 1, so α3 = 1 + α. Then GF (8) has the binary
polynomials of degree at most 2 in α as its elements. For the multiplication, one
should use the relation α3 = 1 + α to reduce the degree to less than 3. For exam-
ple (1+α2)2 = 1+α4 = α(α3 +α+1)+α2 +α+1 = α2 +α+1. As a matter of fact α is,
in this example, a generator of the multiplicative group of GF (2)[x]/(x3 + x+ 1). That
is why α is called a primitive element of GF (8) and why x3 + x+ 1 is called a primitive
polynomial.

Now note that the columns in matrix (4.1) are exactly the elements 1, α, . . . , α6, written
as polynomials of degree at most 2 in α. So, the binary, cyclic Hamming code of length
7 can be described in terms of the non-binary (!) parity check matrix

H =
(

1 α α2 α3 α4 α5 α6
)

(4.7)

i.e. as the code {c in C | HcT = 0T}. This cyclic code has generator polynomial g(x) =
1 + x + x3, which factors into (x − α)(x − α2)(x − α4) over GF (23), and parity check
polynomial h(x) = (1+x)(1+x2 +x3), which factors into (x−1)(x−α3)(x−α5)(x−α6)
over GF (23).

This follows from the factorization of x7 − 1 in GF (2)[x]

x7 − 1 = (1 + x)(1 + x+ x3)(1 + x2 + x3)

and the factorization of x7 − 1 over GF (23)

x7 − 1 = (x− 1)(x− α) · · · (x− α6).

So, one has

x7 − 1

1 + x+ x3
= (1 + x)(1 + x2 + x3),

as well as

x7 − 1

(x− α)(x− α2)(x− α4)
= (x− 1)(x− α3)(x− α5)(x− α6).

In general

xqm−1 − 1 =
∏

ξ∈GF (qm), ξ 6=0

(x− ξ).

So, one can get a complete factorization of xn − 1 into linear factors over GF (qm), if
n|(qm−1), or equivalently qm ≡ 1 (mod n). Indeed, let n|(qm−1) and let ω be a primitive
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element in GF (qm). Then the n different powers of α = ω(qm−1)/n will all be a zero of
xn − 1 and thus

xn − 1 =
n−1∏
i=0

(x− αi).

Since α is a zero of xn − 1 and also generates the other zeros of xn − 1, it is called a
primitive n-th root of unity.

For the existence of an integer m such that qm ≡ 1 (mod n) it is necessary and sufficient
to assume that the gcd of q and n is equal to 1. From now on, we shall always assume
that. In particular, binary cyclic codes will always have odd length.

It also follows from the above that the generator polynomial g(x) of a cyclic code C in
Vn(q) can be written as

g(x) =
∏
i∈I

(x− αi), (4.8)

where I is a subset of {0, 1, . . . , n−1}, called the defining set of C with respect to α. The
parity check polynomial h(x) has the complement of I in {0, 1, . . . , n − 1} as defining
set.

In the notation of above, let f(x) be an irreducible q-ary polynomial dividing xn−1 and
let αi be a zero of f(x). From the theory of finite fields we know, that also (αi)q = αiq

is a zero of f(x) and by induction also αiq2
, . . . , αiqm−1

(not all these elements have to
be different). Of course these exponents can be reduced modulo n, since αn = 1. The
elements αiqj

are called the conjugates of αi. The set {iqj | j = 0, 1, . . .} consisting of
the exponents modulo n of these conjugates is called the cyclotomic coset Ci of i modulo
n.

The set of all conjugates of a zero αi of an irreducible polynomial f(x) gives the complete
factorization of f(x) into linear factors:

f(x) =
∏
l∈Ci

(x− αl).

This polynomial f(x) is called the minimal polynomial of αi and is often denoted by
mi(x).

What we have shown above is that a generator polynomial of a cyclic code is the product
of some minimal polynomials and that the defining set of a cyclic code is the union of
the corresponding cyclotomic cosets. A necessary and sufficient condition for this is that
the defining set I has the property

i ∈ I ⇒ qi ∈ I,

where qi of course has to be reduced modulo n.

Example 4.1.5 Let q = 3 and n = 11. To find the smallest extension field of GF (3) that
contains the 11-th roots of unity, one has to determine (the smallest) m with 11|(qm−1).
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One obtains m = 5. So x11 − 1 =
∏n−1

i=0 (x − αi), where α = ω(35−1)/11 for some (each)
primitive element ω in GF (35).

There are three cyclotomic cosets. The first is C0 = 0, giving rise to the ternary polyno-
mial m0(x) = x− 1. The other two are

C1 = {1, 3, 9, 5, 4}

and

C−1 = {2, 6, 7, 10, 8}.
They give rise to the irreducible, ternary polynomials

m1(x) = (x− α)(x− α3)(x− α9)(x− α5)(x− α4) =

= x5 + x4 − x3 + x2 − 1

and

m−1(x) = (x− α2)(x− α6)(x− α7)(x− α10)(x− α8) =

= x5 − x3 + x2 − x− 1

(or the other way around depending on the choice of α).

The code generated by m1(x) (or by m−1(x)) has dimension k = 6.

The code in Example 4.1.5 will be studied further in Section 4.3.

In view of the above, it is not necessary to give the whole defining set I of a cyclic
code, but just one element from each cyclotomic coset in the defining set. The other
elements (corresponding to the conjugates of these elements) have to be there anyhow.
For instance, it is enough to say that the code in Example 4.1.5 generated by m1(x) has
defining set {1}.

We summarize the preceding theory in the following theorem.

Theorem 4.1.6 Consider Vn(q) with gcd(q, n) = 1. Let m satisfy qm ≡ 1 (mod n) and
let ω be a primitive element in GF (qm). Then α = ω(qm−1)/n is a primitive n-th root of
unity.

Let I = {i1, i2, . . . , il} be a subset of {0, 1, . . . , n − 1}. Then I is the defining set of a
q-ary, cyclic code C of length n and each cyclic code can be defined by such sets.

Let mi(x) be the minimal polynomial of αi. Then C can be described in the following
ways:

C = {c(x) | mi(x) divides c(x) for all i in I}, (4.9)

C = {c(x) | c(αi) = 0 for all i in I}, (4.10)

C = {c ∈ Vn(q) | HcT = 0T}, (4.11)
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where

H =


1 αi1 α2i1 · · · · · · α(n−1)i1

1 αi2 α2i2 · · · · · · α(n−1)i2

...
...

...
1 αil α2il · · · · · · α(n−1)il

 .

One example of this theorem we have already seen. The binary Hamming code of length
7 with parity check matrix (4.1) is a cyclic code with generator polynomial m1(x) =
1 + x+ x3 which has α (and its conjugates) as zero. An equivalent parity check matrix
is given in (4.7).

4.2 BCH codes and Reed-Solomon codes

In (4.7) we have seen that the binary Hamming code of length 7 is (equivalent to) a
cyclic code. This turns out to be true for all binary Hamming codes (to extend this
result to other fields one has to be a little bit more careful).

Theorem 4.2.1 Let α be a primitive element in GF (2m). Then the binary, cyclic code
C of length n = 2m − 1 with defining set {1} has parameters [n = 2m − 1, n −m, 3], so
it is a binary Hamming code.

Proof: Theorem 4.1.6 gives the 1×n parity check matrix (in GF (2m)) of the code with
defining set {1}. Since α is a primitive element of GF (2m) (and thus a primitive n-th
root of unity) all the columns in H, when written as binary vectors, are distinct non-zero
vectors in Vm.

This proves that C is the binary Hamming code of length 2m − 1.

2

The defining set {1} in Theorem 4.2.1 gives a binary code that is 1-error-correcting, so
one may want to try {1, 2} as defining set for a 2-error-correcting, binary code. This
does not work however, because c(α) = 0 implies (for binary c(x)) that c(α2) = 0, and
thus this equation will not give any additional relation.

Theorem 4.2.2 Let α be a primitive element in GF (2m). The binary cyclic code C of
length n = 2m − 1 with defining set {1, 3} is 2-error correcting.

Instead of giving a proof that the code C in Theorem 4.2.2 has minimum distance 5, we
shall give an algorithm for decoding up to 2 errors.

The parity check matrix of C is given by:

H =

(
1 α1 α2 · · · · · · α(n−1)

1 α3 α2·3 · · · · · · α(n−1)·3

)
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Let c be the transmitted word and r the received word. So r = c+ e, where e has weight
at most 2. The syndrome of r consists of the elements s1, s3 in GF (2m), defined by

s1 = r(α) = c(α) + e(α) = e(α),

s3 = r(α3) = c(α3) + e(α3) = e(α3),

where we have used the conditions on c in C : c(α) = c(α3) = 0.

There are three cases to be considered:

Case 0: w(e) = 0.

In this case r = c and no errors have been made. Further s1 = s3 = 0.

Case 1: w(e) = 1.

Let the single error be at coordinate i, so e(x) = xi. One has s1 = e(α) = αi and
s3 = e(α3) = α3i. In particular, s3 = s3

1 and s1 6= 0.

Case 2: w(e) = 2.

Let the two errors be at coordinates i and j, so e(x) = xi + xj, i 6= j. One has s1 =
e(α) = αi + αj and s3 = e(α3) = α3i + α3j.

Note that s3 + s3
1 = α3i + α3j + (αi + αj)3 = α2iαj + αiα2j = αi+j(αi + αj) = αi+js1.

Since i 6= j, in this case s3 6= s3
1.

It also follows that

x2 + s1x+
s3 + s3

1

s1

= x2 + (αi + αj)x+ αi+j = (x− αi)(x− αj).

So the zeros of x2 + s1x+
s3+s3

1

s1
will give the locations of the errors.

Together, these three cases prove that the following algorithm will decode up to two
errors.

Algorithm 4.2.3 Consider the binary, cyclic 2-error-correcting code of length n = 2m−
1 of Theorem 4.2.2. Let r be a received word, which is at distance at most 2 from a
codeword.

Then the closest codeword to r can be found in the following way:

• Determine the syndrome s1 = r(α) and s3 = r(α3).

• There are three mutually excluding cases:

1. If s1 = s3 = 0, the received word r is a codeword.

2. If s3 = s3
1 6= 0, a single error has been made at coordinate i, determined by

s1 = αi.
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3. If s3 6= s3
1, two errors have been made. Their coordinates i and j are deter-

mined by the zeros αi and αj of z2 + s1z +
s3+s3

1

s1
.

We shall now describe a very general class of cyclic codes with certain guaranteed min-
imum distance properties. They are named after R.C. Bose, D.K. Ray-Chaudhuri and
A. Hocquenghem (the first two found this class independently of the last).

Definition 4.2.4 Let α be a primitive n-th root of unity in an extension field of GF (q)
and let I be the defining set of a q-ary cyclic code C of length n.

If I contains dBCH − 1 consecutive integers (taken modulo n), one says that C is a BCH
code of designed distance dBCH .

If I contains {1, 2, . . . , dBCH − 1} as a subset, the code C will be called a narrow-sense
BCH code.

If n = qm − 1, the code C is called a primitive BCH code (in this case α itself is a
primitive field element).

The justification of the notation dBCH will be given in the following theorem.

Theorem 4.2.5 (BCH bound) The minimum distance d of a BCH code with designed
distance dBCH satisfies

d ≥ dBCH . (4.12)

Proof: We shall only prove the theorem for the special case of narrow-sense codes. The
general case will follow from a theorem in the next section.

Take any non-zero codeword c(x) in C and compute the polynomial

C(X) =
n∑

i=1

c(αi)Xn−i.

The polynomial C(X) is called the Mattson-Solomon polynomial of c(x). Because c(αi) =
0 for 1 ≤ i ≤ dBCH − 1 by assumption, we conclude that C(X) is a polynomial in X of
degree at most n− dBCH , so it has at most n− dBCH distinct zeros.

Now, for 0 ≤ l ≤ n− 1,

C(αl) =
n∑

i=1

c(αi)α−il =
n∑

i=1

n−1∑
j=0

cjα
ijα−il =

=
n−1∑
j=0

n∑
i=1

cjα
i(j−l) = ncl,

because 1 + αu + α2u + . . . + α(n
u
−1)u for 1 ≤ u < n is equal to αn−1

αu−1
which is zero. It

follows that at most n− dBCH coordinates cl can be zero and thus that c(x) has weight
at least dBCH .
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2

How to decode up to eBCH = b(dBCH − 1)/2c errors is an entirely different problem.
This will be discussed in a more general setting in Section 4.5.

Example 4.2.6 In order to construct a binary, narrow-sense BCH code of length 15
with designed distance 7, one has to take a defining set including {1, 2, . . . , 6}. Clearly,
GF (24) is the smallest extension field of GF (2) containing primitive 15-th roots of unity.

The relevant cyclotomic cosets in GF (24) are {1, 2, 4, 8}, {3, 6, 12, 9} and {5, 10}, with
corresponding irreducible polynomials m1(x), m3(x) and m5(x) of degree 4, 4, and 2
respectively.

So, the binary cyclic code of length 15 generated by the 10-th degree polynomial g(x) =
m1(x)m3(x)m5(x) has parameters [15, 5,≥ 7].

Example 4.2.7 Consider the binary code of length 23 with defining set {1} and let α
be a primitive 23-rd root of unity. One can find α in GF (211).

The cyclotomic coset of α1 is given by {1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12} of cardinality 11.
In particular it contains 1, 2, 3 and 4. By the BCH bound this code has parameters
[23, 12,≥ 5].

The actual minimum distance of the code in Example 4.2.7 will be determined in Section
4.3.

The following special subclass of BCH codes turns out to be very important in many
applications.

Definition 4.2.8 A Reed-Solomon code is a narrow-sense q-ary BCH code of length
n = q − 1.

The smallest extension field of GF (q) containing n-th roots of unity with n = q −
1 is of course GF (q) itself. Let α be a primitive element of GF (q). The generator
polynomial g(x) of the Reed-Solomon code with designed minimum distance dBCH is
given by

∏dBCH−1
i=1 (x − αi), which has degree dBCH − 1. So this code has parameters

[n = q − 1, n − (dBCH − 1),≥ dBCH ]. It follows however from the linear version of
the Singleton bound at the end of Section 2.2 that equality must hold, i.e. the actual
minimum distance is equal to dBCH . A different way to see this is to observe that g(x)
has degree dBCH−1 and thus weight at most dBCH . It follows that the minimum distance
of this Reed-Solomon code is also bounded above by dBCH and thus it must be equal to
dBCH .

So, Reed-Solomon codes are MDS. Shortening a MDS code again gives a MDS code.
Thus, we have proved the first statement in the next theorem.

Theorem 4.2.9 The (shortened) Reed-Solomon codes are MDS. Also, the extended
Reed-Solomon code is MDS.
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Proof: The extended code is defined by (3.1.1). A codeword c(x) of weight d cannot
satisfy c(1) = 0, because then it would have d consecutive zeros and by the BCH bound
it would have weight at least d + 1. So c(1) 6= 0 and thus the extension of a weight d
codeword will have weight d+ 1.

2

4.3 The Golay codes

In this section we want to further analyze two codes that we have already seen before.
The first one is the binary [23, 12,≥ 5] code C described in Example 4.2.7.

By looking at the cyclotomic coset containing α one sees that x23 − 1 = (x −
1)m1(x)m−1(x) and that m1(x) = x11m−1(1/x).

Now consider a codeword c(x) in C of even weight w, say c(x) = xi1 + xi2 + · · ·+ xiw . It
follows that

c(x) ≡ 0 (mod (x− 1)m1(x))

and, for the same reason, that

x23c(1/x) ≡
w∑

u=1

x−iu ≡ 0 (mod (x− 1)m−1(x)).

Since x23 − 1 = (x− 1)m1(x)m−1(x), it follows that c(x)x23c(1/x) ≡
0 (mod x23 − 1) and thus, because w is even,

0 ≡
w∑

u=1

xiu
w∑

v=1

x−iv ≡
w∑

u 6=v,u,v=1

xiu−iv (mod x23 − 1).

Writing
∑22

i=1 six
i for this sum, we conclude that each si must be zero modulo 2. However,

the sum also does not change under the mapping x→ 1/x modulo x23− 1, which shows
that si = s23−i.

The expression
∑w

u 6=v,u,v=1 x
iu−iv contains w(w−1) terms. Whenever there is a cancelation

of terms, say iu − iv ≡ iu′ − iv′ (mod 23), also a second cancelation of terms occurs:
iv− iu ≡ iv′− iu′ (mod 23). So terms disappear four at a time. It follows that w(w−1) ≡ 0
(mod 4). A different way of saying the same is: w(w − 1) ≡ ∑22

i=1 si ≡
∑11

i=1 2si ≡
0 (mod 4), since each si is even.

Since 2(2− 1) ≡ 2 (mod 4), we can conclude that no codewords in C occur of weight 2
mod 4.

The code C obviously contains the all-one vector because
∑22

i=0 x
i = (x23 − 1)/(x− 1) =

m1(x)m−1(x). Let A(z) be the weight enumerator of C. From Ai = A23−i for all i, we
now know: A5 = A18 = 0, A6 = 0, proving that C has minimum distance at least 7.
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However, 212∑3
i=0

(
23
i

)
= 223, so the minimum distance cannot be more. The code C is

perfect! It is called the binary Golay code.

Theorem 4.3.1 The binary, cyclic code of length 23 with defining set {1} has parame-
ters [23, 12, 7], so it is a perfect code.

Let us now study another code that we have seen before: the cyclic, ternary [11, 6,≥ 4]
code in Example 4.1.5 generated by x5+x4−x3+x2−1 (or its reciprocal). The extended
code Cext has generator matrix Gext:

−1 0 +1 −1 +1 +1 0 0 0 0 0 −1
0 −1 0 +1 −1 +1 +1 0 0 0 0 −1
0 0 −1 0 +1 −1 +1 +1 0 0 0 −1
0 0 0 −1 0 +1 −1 +1 +1 0 0 −1
0 0 0 0 −1 0 +1 −1 +1 +1 0 −1
0 0 0 0 0 −1 0 +1 −1 +1 +1 −1


.

One can easily check that the top row is orthogonal to itself and all other rows. So,
each linear combination of rows of Gext is orthogonal to each linear combination of rows.
It follows that the extended code Cext is selfdual. From 12 ≡ (−1)2 (mod 3), it follows
that each vector in Cext has a weight divisible by 3. So it is a [12, 6,≥ 6] code and the
original cyclic code has parameters [11, 6,≥ 5].

Again the Hamming bound gives: 36∑2
i=0

(
11
i

)
2i = 311, so the minimum distance can not

be more than 5. Also this code is perfect! It is called the ternary Golay code.

Theorem 4.3.2 The ternary, cyclic code of length 11 with defining set {1} has parame-
ters [11, 6, 5], so it is a perfect code.

We now know the following perfect codes in Vn(q): the Golay codes, the Hamming
codes, the binary repetition codes of odd length and the trivial codes of cardinality 1.
It has been proved that there are no other parameter sets for which a perfect code can
exist. Moreover, the Golay codes are unique, which means that any code with the same
parameters as one of the Golay codes is in fact equivalent to it.

4.4 Goppa codes

To make it clear that the class of codes to be defined in this section is a generalization of
the class of BCH codes, we shall first give an alternative description of the BCH codes.

To do this properly, first a notational matter has to be settled.

Let a(x) andG(x) be two polynomials over some field, that have no factor in common. By
Euclid’s Algorithm (see Algorithm 4.5.3), a polynomial u(x) exists, such that a(x)u(x) ≡ 1
(mod G(x)). It is quite customary to denote u(x) by a−1(x) or 1

a(x)
, just like 1

2
≡ 4

(mod 7). For instance 1
1−r
≡ 1 + r + · · ·+ rl−1 ≡ 1−rl

1−r
(mod rl).
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Theorem 4.4.1 The q-ary narrow sense, BCH code of length n with designed distance
dBCH is equivalent to the code

{c ∈ Vn(q) |
n−1∑
i=0

ci
x− αi

≡ 0 (mod xdBCH−1)}, (4.13)

where α is an n-th root of unity in an extension field of GF (q).

Proof: Clearly a necessary and sufficient condition for c to be in the BCH code is given
by S(x) = 0, where S(x) =

∑dBCH−1
j=1 Sjx

j−1 with Sj = c(αj).

From

S(x) ≡
dBCH−1∑

j=1

Sjx
j−1 ≡

≡
dBCH−1∑

j=1

n−1∑
i=0

ciα
ijxj−1 ≡

≡
n−1∑
i=0

ci

dBCH−1∑
j=1

αijxj−1 ≡

≡
n−1∑
i=0

ciα
i 1− αi(dBCH−1)xdBCH−1

1− αix
≡

≡
n−1∑
i=0

ciα
i 1

1− αix
≡

≡ −
n−1∑
i=0

ci
x− α−i

(mod xdBCH−1)

it follows that the BCH code is equivalent to the code defined by (4.13). Indeed, one
only needs to replace α by α−1. 2

Definition 4.4.2 Let L = {α0, α1, . . . , αn−1} be a subset of GF (qm) of size n and let
G(x) be a polynomial of degree s over GF (qm) that is not zero in any of the elements
αi. Then, the Goppa code Γ(L,G) is defined by

Γ(L,G) = {c ∈ Vn(q) |
n−1∑
i=0

ci
x− αi

≡ 0 (mod G(x))}. (4.14)

By taking G(x) = xdBCH−1 and αi = αi, 0 ≤ i < n, relation (4.14) reduces to (4.13), so
the class of Goppa codes contains the BCH codes as a subclass.

Quite clearly, Goppa codes are linear.

Whenever convenient, we shall say that the i-th coordinate of a Goppa code is at position
αi, 0 ≤ i ≤ n− 1.
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Theorem 4.4.3 The Goppa code Γ(L,G) of length n with G(x) of degree s has parame-
ters [n,≥ n−ms,≥ s+ 1].

Proof:

i) We shall first show that Γ(L,G) has minimum distance at least s+ 1.

Let c be a codeword of weight w, w > 0 and let the non-zero coordinates of c be at
positions {αi1 , αi2 , . . . , αiw}.

Write the summation in (4.14) as one fraction. Then, because the denominator has no
factor in common with G(x), condition (4.14) is equivalent to stating that the numerator
in (4.14) is divisible by G(x), i.e.

G(x) divides
w(c)∑
l=1

cil
∏

1≤j≤w,j 6=l

(x− αij).

However this numerator has degree at most w − 1. It follows that w − 1 ≥ s.

ii) To prove the bound on the dimension of Γ(L,G), we write each 1/(x− αi), 0 ≤ i ≤
n− 1, as a polynomial Gi(x) =

∑s−1
j=0Gijx

j modulo G(x).

Condition (4.14) can now be written as

n−1∑
i=0

ciGi(x) ≡ 0 (mod G(x))

or, alternatively, by considering the coefficients of xj, 0 ≤ j ≤ s− 1,

n−1∑
i=0

ciGij = 0 for 0 ≤ j ≤ s− 1.

This means that Γ(L,G) can be defined by s linear equations over GF (qm) and thus by
≤ ms linear equations over GF (q). Hence, Γ(L,G) has dimension at least n−ms.

2

Example 4.4.4 (to be continued) Let α be the primitive element in GF (24) satisfying
α4 + α3 + 1 = 0. Consider the binary Goppa code Γ(L,G) of length 12 with G(x) =
(x+ α)(x+ α14) = x2 + α8x+ 1 and L = {αi | 2 ≤ i ≤ 13}.

The inverses Gi(x) =
∑s−1

j=0Gijx
j, 2 ≤ i ≤ 13, of (x− αi) modulo G(x) are given by the

columns (Gi0, Gi1)
T in the following parity check matrix of Γ(L,G):

H =

(
α9 α α8 α13 α7 α5 0 α9 α α6 α5 α6

α14 α3 α α4 α7 α1 α14 α4 α14 α9 α9 α3

)
.

To check the correctness of the first column of H, i.e. that
1

x− α2
≡ α9 + α14x

(mod x2 + α8x+ 1), note that

(x− α2)(α9 + α14x) ≡ α11 + α7x+ α14x2 ≡
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≡ α11 + α7x+ α14(1 + α8x) ≡ 1 (mod x2 + α8x+ 1).

The above parity check matrix H can be written as a binary matrix by writing each
power of α with respect to the basis 1, α, α2, α3. One obtains

H =



1 0 0 0 1 1 0 1 0 1 1 1
0 1 1 1 1 1 0 0 1 1 1 1
1 0 1 1 1 0 0 1 0 1 0 1
0 0 1 0 0 1 0 0 0 1 1 1
0 0 0 1 1 0 0 1 0 1 1 0
0 0 1 0 1 1 0 0 0 0 0 0
1 0 0 0 1 0 1 0 1 1 1 0
1 1 0 1 0 0 1 1 1 0 0 1


.

It is not so difficult to check thatH has rank 8, which makes this Goppa code a [12, 4,≥ 3]
code.

In the binary case, much better bounds on the minimum distance can be given than the
bound in Theorem 4.4.3.

Theorem 4.4.5 Let the defining polynomial G(x) of the binary Goppa code Γ(L,G) be
a polynomial over GF (2m) of degree s that has no multiple zeros. Then, the Goppa code
Γ(L,G) will have minimum distance at least 2s+ 1.

Proof: Write L = {α0, α1, . . . , αn−1} and let c be a codeword of weight w, w ≥ 0. Define
f(x) =

∏n−1
i=0 (x− αi)

ci . It has degree w.

Now f ′(x)/f(x) =
∑n−1

i=0 ci/(x − αi). So equation (4.14) is equivalent to G(x) divides
f ′(x), as f(x) and f ′(x) have no common factors. But, because q = 2, f ′(x) only has
terms with even exponents, say f ′(x) = f1 + f3x

2 + · · · + f2u+1x
2u, with 2u < w. In

GF (2m) this implies that f ′(x) = (g1 + g3x+ · · ·+ g2u+1x
u)2, with g2

i = fi.

We conclude that G(x) divides (g(x))2, with g(x) of degree at most u, where 2u < w.
Since G(x) has no multiple zeros, one even has that G(x) divides g(x). Hence s ≤ u and
thus w > 2u ≥ 2s.

2

Example 4.4.4 (continued) Since the Goppa polynomial G(x) in Example 4.4.4 is a
polynomial over GF (24) without repeated zeros and is of degree 2, we may now conclude
that the code Γ(L,G) in that example is a [12, 4,≥ 5] code.

4.5 A decoding algorithm

Goppa codes, BCH codes and Reed-Solomon codes can all be decoded efficiently by the
same decoding technique (see Algorithm 4.5.8). It makes use of Euclid’s Algorithm (see
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Algorithm 4.5.3). We shall only describe how errors can be corrected, but the reader
should know that this decoding algoritm can be adapted to perform error and erasure
decoding.

We shall give the most general version: the decoding of Goppa codes. For the correct
decoding of a received word, one needs to know two things: the location where the errors
occurred and what their values are.

Let G(x) be a polynomial over GF (qm) of degree s that has no multiple zeros and let
L = {α0, α1, . . . , αn−1} be a subset of GF (qm) of cardinality n. Let c in the Goppa code
Γ(L,G) be a transmitted codeword and let the vector r = c+e denote the received word.

Define the set B of error locations B = {αi | ei 6= 0} and for the β in B the corresponding
error value eβ = ei, where β = αi.

Definition 4.5.1 The error locator polynomial σ(x) and the error evaluator polynomial
ω(x) of an error vector are defined by

σ(x) =
∏
β∈B

(x− β), (4.15)

ω(x) =
∑
β∈B

eβ

∏
γ∈B,γ 6=β

(x− γ). (4.16)

The error locations are simply the zeros of σ(x). The next theorem will give some
properties of σ(x) and ω(x). In particular, it will tell how to find the error values
and also how σ(x) and ω(x) are related to the syndrome S(x) of the received word:
S(x) =

∑n−1
i=0 ri/(x− αi) ≡

∑
β∈B eβ/(x− β) (mod G(x)).

Theorem 4.5.2 Let e be an error vector of weight t. Let S(x) be its syndrome and let
σ(x) and ω(x) be its error locator, resp. error evaluator polynomial. Then

degree(σ(x)) = t = |B|, degree(ω(x)) ≤ t− 1, (4.17)

gcd(σ(x), ω(x)) = 1, (4.18)

eβ = ω(β)/σ′(β), β ∈ B, (4.19)

σ(x)S(x) ≡ ω(x) (mod G(x)). (4.20)

Equation (4.20) is called the key equation for the decoding algorithm.

Proof: Equations (4.17) and (4.18) follow directly from definitions (4.15) and (4.16).

To prove equation (4.19), take the derivative of σ(x) to get σ′(x) =
∑

β∈B

∏
γ∈B,γ 6=β(x−γ).

Substitution of β = ν, ν in B, yields σ′(ν) =
∏

γ∈B,γ 6=ν(ν − γ). Substitution of β = ν in
ω(x) will now result in eνσ

′(ν).

Finally,

S(x)σ(x) ≡
∑
β∈B

eβ

x− β
∏
γ∈B

(x− γ) ≡
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≡
∑
β∈B

eβ

∏
γ∈B,γ 6=β

(x− γ) ≡

≡ ω(x) (mod G(x)). (4.21)

2

Determining σ(x) and ω(x) from (4.21) amounts to applying (the well-known) Euclid’s
Algorithm for polynomials to G(x) and S(x).

Algorithm 4.5.3 (Euclid’s Algorithm) Let a(x) and b(x) be two q-ary polynomials,
where degree(a(x)) ≥ degree(b(x)).

Define the sequences of polynomials si(x), ui(x), vi(x) and qi(x), where the degrees of
si(x) are strictly decreasing, recursively as follows.

s0(x) = a(x), s1(x) = b(x),
u0(x) = 1, u1(x) = 0,
v0(x) = 0, v1(x) = 1,
i = 1.

While si(x) 6= 0 do begin

i := i+ 1
Define qi(x) and si(x) by the division
si−2(x) = qi(x)si−1(x) + si(x)
with degree(si(x)) < degree(si−1(x)).
Define ui(x) and vi(x) by
ui−2(x) = qi(x)ui−1(x) + ui(x),
vi−2(x) = qi(x)vi−1(x) + vi(x).
end

n=i.

Then

gcd(a(x), b(x)) = sn−1(x) = un−1(x)a(x) + vn−1(x)b(x). (4.22)

Before we can derive the property of the above algorithm that will be essential for the
decoding algorithm, we need three lemmas. Some readers may want to skip these lemmas
with their proofs and move directly to Theorem 4.5.7.

Lemma 4.5.4 The sequences of polynomials defined in Algorithm 4.5.3 satisfy the fol-
lowing equations:
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(i) (−1)i+1a(x) = vi(x)si−1(x)− vi−1(x)si(x), 1 ≤ i ≤ n− 1,
(ii) (−1)ib(x) = ui(x)si−1(x)− ui−1(x)si(x), 1 ≤ i ≤ n− 1,

(iii) (−1)i = ui(x)vi−1(x)− ui−1(x)vi(x), 1 ≤ i ≤ n− 1,
(iv) degree(ui(x))+ degree(si−1(x)) = degree(b(x)), 2 ≤ i ≤ n− 1,
(v) degree(vi(x))+ degree(si−1(x)) = degree(a(x)), 1 ≤ i ≤ n− 1,

(vi) si(x) = ui(x)a(x) + vi(x)b(x), 0 ≤ i ≤ n.

Proof: Straightforward induction on i. 2

For our purposes, we are not interested in both the ui(x) and the vi(x) sequences, only
the vi(x) sequence will do.

Lemma 4.5.5 Let k and l be two nonnegative integers satisfying k+l = degree(a(x))−1
and l ≥ degree(gcd(a(x), b(x))). Then there exists a unique integer i, 1 ≤ i ≤ n−1, such
that

degree(vi(x)) ≤ k, (4.23)

degree(si(x)) ≤ l. (4.24)

Proof: Since the degrees of the polynomials si(x) are strictly decreasing, we can define
a unique integer i by

degree(si(x)) ≤ l ≤ degree(si−1(x))− 1. (4.25)

From (v) it follows that

degree(vi(x)) ≤ k ≤ degree(vi+1(x))− 1. (4.26)

These two equations not only imply the existence of the integer i in the statement of the
lemma, but also its uniqueness. Indeed equation (4.25) shows that no smaller value of i
can be taken, while equation (4.26) shows that no larger value of i is permissable.

2

Relation (vi) can be written as vi(x)b(x) ≡ si(x) (mod a(x)), while (v) (and the de-
creasing degrees of the si(x) sequence) implies that degree(vi(x)) + degree(si(x)) <
degree(a(x)). The next theorem shows that polynomials v(x) and s(x) with these two
properties are unique up to a common factor.

Lemma 4.5.6 Let s(x) and v(x) be two non-zero polynomials satisfying

v(x)b(x) ≡ s(x) (mod a(x)), (4.27)

degree(v(x))+ degree(s(x)) < degree(a(x)) (4.28)

Then there exists a unique integer i, 1 ≤ i ≤ n, and a polynomial λ(x) such that

v(x) = λ(x)vi(x) (4.29)

s(x) = λ(x)si(x). (4.30)
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Proof: Let l = degree(s(x)) and k = degree(a(x))− degree(s(x)) − 1. By (4.27)
gcd(a(x), b(x)) divides s(x), so l ≥ degree(gcd(a(x), b(x))). Let i be the unique in-
teger defined in Lemma 4.5.5 for these values of k and l. From (4.25) it follows
that degree(si−1(x)) ≥ l + 1 ≥ degree(si(x)) + 1. Similarly (4.26) implies that
degree(vi+1(x)) ≥ k + 1 ≥ degree(vi(x)) + 1. We conclude that if there exists an in-
teger i satisfying (4.29) and (4.30) it must be unique and equal to the integer defined by
Lemma 4.5.5.

Equation (4.27) can be written as

s(x) = u(x)a(x) + v(x)b(x) (4.31)

for some u(x). Property (vi) in Lemma 4.5.4 has a similar form:

si(x) = ui(x)a(x) + vi(x)b(x) (4.32)

Eliminating b(x) from these two relations yields

si(x)v(x) ≡ s(x)vi(x) (mod a(x)).

However, both si(x) and s(x) have degree at most l and both v(x) and vi(x) have degree
at most k. Since k + l < degree(a(x)) we conclude that

si(x)v(x) = s(x)vi(x).

Substituting this back in (4.31) and (4.32) results in

ui(x)v(x) = u(x)vi(x).

But ui(x) and vi(x) have gcd 1 by property (iii) in Lemma 4.5.4, so u(x) = λ(x)ui(x)
and v(x) = λ(x)vi(x) for some polynomial λ(x). Substituting these again in (4.31) and
(4.32) yields s(x) = λ(x)si(x).

2

We are finally able to give the theorem on which the decoding algorithm for the Goppa
codes is based.

Theorem 4.5.7 Let σ(x) and ω(x) be the error-locator and error-evaluator polynomials
of an error pattern of weight at most bs/2c, where s is the degree of the polynomial G(x)
of the Goppa code Γ(L,G). Let S(x) be the syndrome of the error pattern. Then

σ(x) = λvi(x), (4.33)

ω(x) = λsi(x), (4.34)

where si(x) and vi(x) are obtained from applying Euclid’s Algorithm to a(x) = G(x) and
b(x) = S(x) until degree(si(x)) < bs/2c for the first time and where λ is chosen such
that λvi(x) is monic.
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Proof: The polynomials σ(x) and ω(x) satisfy the conditions of Lemma 4.5.6, so σ(x) =
λ(x)vi(x) and ω(x) = λ(x)si(x). From (4.18) we conclude that λ(x) must be a constant.
This has to be chosen so as to make σ(x) monic (see (4.15)).

2

Now we can formulate the decoding algorithm for the class of Goppa codes (and its
subclasses of BCH and Reed-Solomon codes).

So, let Γ(L,G) be a q-ary Goppa code of length n with degree(G(x)) = s and L =
{α0, α1, . . . , αn−1} in GF (qm). Let r be a received vector, r = c + e, with weight(e) ≤
bs/2c and c in Γ(L,G). Then, by Theorem 4.5.7, the following algorithm applied to r
will output c.

Algorithm 4.5.8 (Decoding Goppa codes) Write r = (r0, r1, . . . , rn−1).

1. Compute the syndrome

S(x) ≡
n−1∑
i=0

ri

x− αi

(mod G(x)).

2. Apply Euclid’s Algorithm to a(x) = G(x) and b(x) = S(x) until degree(si(x)) <
bs/2c for the first time. Let ν be the leading coefficient of vi(x). Set σ(x) = vi(x)/ν
and ω(x) = si(x)/ν.

3. Find the set B = {β in GF (qm) | σ(β) = 0} of error locations.

4. Determine the error values eβ = ω(β)/σ′(β) for all β in B.

5. Determine e = (e0, e1, . . . , en−1) from ei = eβ if β is in B and β = αi and ei = 0
otherwise.

6. Set c = r − e.

Remark 1: In Step 3 in the above algorithm one simply has to try the various αi in L
until degree(σ(x)) zeros have been found.

Remark 2: The division by ν in Step 2 is not necessary. Indeed, the zeros of σ(x) are
not changed by a scalar multiplication and for the computation of the error values (in
Step 4) both numerator and denominator contain the same factor v.

Remark 3: For the decoding of BCH and RS codes over an extension field of GF (2)
one can compute the syndrome directly from Sj = r(αj), 1 ≤ j ≤ dBCH − 1. The error
locations are now however given by the reciprocals of the elements in B. The reason for
this lies in the equivalence of the BCH code and the Goppa code under the mapping
α→ α−1 (see the proof of Theorem 4.4.1).
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Let Γ(L,G) be a binary Goppa codes defined by an irreducible Goppa polynomial
G(x) of degree s over GF (2m). Then Γ(L,G) is s error-correcting by Theorem 4.4.5.
However, Algorithm 4.5.8 will only decode up to bs/2c errors, because the Euclid-
ean Algorithm can not be applied directly. Note that in this case (4.16) reduces to
ω(x) =

∑
β∈B

∏
γ∈B,γ 6=β(x− γ) = σ′(x). So the key equation (4.20) can now be rewritten

as

σ(x)S(x) ≡ σ′(x) (mod G(x)). (4.35)

By splitting off the squares and the non-squares is σ(x) one can write

σ(x) = α2(x) + xβ2(x) (4.36)

with

degree(α(x)) ≤ s/2 and degree(β(x)) ≤ (s− 1)/2. (4.37)

Since GF (2m) has characteristic 2, it follows that

σ′(x) = β2(x). (4.38)

Because G(x) is irreducible, one can use Euclid’s Algorithm to find the multiplicative
inverse T (x) of S(x) modulo G(x). So T (x) is determined by S(x)T (x) ≡ 1 (mod G(x)).
Substituting (4.36) and (4.38) in (4.35) yields

(T (x) + x) β2(x) ≡ α2(x) (mod G(x)). (4.39)

If T (x) = x, one has that α(x) = 0 and thus that σ(x) = xβ2(x). Since σ(x) has no
repeated zeros, it follows that β(x) = 1 and that σ(x) = x.

In the case that T (x) 6= x, more work has to be done to find σ(x). First we determine
the uniquely defined polynomial R(x) satisfying R2(x) ≡ T (x) + x (mod G(x)). Indeed,
this can be done since squaring polynomials modulo G(x) is a linear mapping, because
the characteristic of GF (2m) is 2. The inverse of this linear mapping applied to T (x)+x
yields R(x) (store this inverse mapping when decoding more words).

After substitution of T (x) + x ≡ R2(x) (mod G(x)) in (4.39), one obtains R2(x)β2(x) ≡
α2(x) (mod G(x)) and thus that

R(x)β(x) ≡ α(x) (mod G(x)). (4.40)

It follows that in exactly the same way as in Algorithm 4.5.8 (i.e. by means of Theorem
4.5.7) Euclid’s Algorithm can be applied to G(x) and R(x) to determine the polynomials
α(x) and β(x), satisfying (4.37) and (4.40).

Putting σ(x) = α2(x) + xβ2(x) one is now ready to proceed with Algorithm 4.5.8 (only
Steps 3, 5 and 6 are needed, because eβ = 1 for β ∈ B).

It is in the above way that binary Goppa codes can be decoded.
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4.6 Geometric Goppa codes

The Goppa codes that are discussed in Section 4.4 are now known to belong to a much
larger class of codes. It was Goppa himself who formulated the generalization. The codes
in this larger class are all constructed with the help of algebraic curves and are therefore
called geometric Goppa codes, algebraic-geometry codes or just AG codes. For a general
treatment, we refer the reader to the literature. To construct a particular class of codes,
we use:

Definition 4.6.1 Let q be a power of a prime and let s and t be two positive integers
such that gcd(s, q) = 1 and gcd(s, t) = 1. Let f ∈ GF (q)[x] be a q-ary polynomial of
degree t with no multiple zeros. Let the set P be defined by

P = {(x, y) | ys = f(x), x ∈ GF (q), y ∈ GF (q)}. (4.41)

The set P with its defining equation ys = f(x) is called an algebraic curve, its elements
are called points. Let n denote the cardinality of P and write P = {P1, P2, . . . , Pn}. For
non-negative m, we define a vector space L(m) of functions by the following linear span
over GF (q)

L(m) = 〈xiyj | is+ jt ≤ m, 0 ≤ i, 0 ≤ j < s〉. (4.42)

The AG-code C(P ,m) is defined as the following set of q-ary vectors:

C(P ,m) = {(u(P1), u(P2), . . . , u(Pn)) | u ∈ L(m)}. (4.43)

Notice that the choice of the parameters s and t and of the function f is suppressed in
the notation C(P ,m).

The first question that arises is: what are the parameters of AG-codes? It is clear that
the length of an AG-code is given by the number of points in the set P , i.e. by n. The
dimension of an AG-code is related to the dimension of L(m) and is treated in Corollary
4.6.5. The restriction j < s in (4.42) can be made, because terms xiyj with j ≥ s can
be reduced by means of the relation ys = f(x). We shall give methods to estimate the
minimum distance in Lemma 4.6.6. First, we shall discuss some examples.

Example 4.6.2 The first non-trivial choice for the numbers s and t in Definition 4.6.1
is to take s = t = 1. With f(x) = x, the set P consists of the q points (x, x), x ∈ GF (q).
The corresponding curve is called an affine line. In the definition of L(m) we now have
j = 0 and L(m) is spanned by the monomials xi, 0 ≤ i ≤ m, i.e. L(m) is the space of
polynomials in x of degree at most m. Clearly, any polynomial in L(m) has at most m
zeros.

For 0 ≤ m ≤ q − 1 this code C(P ,m) has dimension k = m + 1 and any non-zero
codeword has at most m coordinates equal to 0. Thus the parameters of this AG-code
are [q,m+1, q−m]. In particular the code meets the Singleton bound (see also Problem
4.7.1). Note that for m = q − 1 the code has parameters [q, q, 1] and we will clearly get
no larger codes for m > q − 1.
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Example 4.6.3 Consider the finite field GF (4) = GF (2)[x]/(f(x)) with f(x) = x2 +
x + 1 and let α be a zero of f(x). Thus GF (4) = {0, 1, α, α2}. Also, let s = 3, t = 2,
where t is the degree of f . What are the points in P (see (4.41)), i.e. what (x, y) satisfy
y3 = x2 + x+ 1? Obviously we have the point (α, 0) and also (α2, 0) is a point. If y 6= 0
then y3 = 1 and only x = 0 or x = 1 do satisfy y3 = f(x). The complete set of points
becomes

P = {(α, 0), (α2, 0), (0, 1), (1, 1), (0, α), (1, α), (0, α2), (1, α2)}

The vectorspaces L(m), for the first few values of m are given by:

L(0) = 〈1〉,
L(1) = 〈1〉,
L(2) = 〈1, y〉,
L(3) = 〈1, y, x〉,
L(4) = 〈1, y, x, y2〉,
L(5) = 〈1, y, x, y2, xy〉,
L(6) = 〈1, y, x, y2, xy, x2〉,
L(7) = 〈1, y, x, y2, xy, x2, xy2〉.

The pattern is by no means as simple as for the affine line in Example 4.6.2. The equation
y3 = x2 + x + 1 corresponds to a so-called elliptic curve. For m ≥ 1, the dimension of
L(m) increases by 1 when m increases by 1 (this is indeed true for larger values of m
as follows from Corollary 4.6.5 below). Thus, for 1 ≤ m ≤ 7, the code C(P ,m) has
dimension k = m. The dimension is one lower than in Example 4.6.2, because this time
we have no monomial xiyj with is+ jt = 3i+ 2j = 1.

For the minimum distance, note that the function y ∈ L(2) has two zeros, the points:
(α, 0) and (α2, 0). The function x ∈ L(3) has three zeros, the points: (0, 1), (0, α) and
(0, α2). In general the number of zeros of a function f ∈ L(m) can be shown to be not
larger than m (see Lemma 4.6.6). We conclude that the code C(P ,m) in this example
has parameters [8,m, d ≥ 8−m], for 1 ≤ m ≤ 7.

To obtain the dimension of L(m) in general and to clarify the restriction j < s in
Definition 4.6.1, we need the following lemma.

Lemma 4.6.4 Let s, t be positive integers with gcd(s, t) = 1 and let r be any integer.
Precisely one of the following two equations has a non-negative integer solution (i, j):

i′ s+ j′ t = st− s− t− r (4.44)

i′′ s+ j′′ t = r (4.45)
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Proof: Both equations have integer solutions, since gcd(s, t) = 1. Let (i′, j′) and (i′′, j′′)
be the unique solutions with 0 ≤ j′, j′′ < s (any solution can be uniquely transformed in a
solution satisfying this restriction by adding a proper multiple of the equation ts−st = 0
to it). In particular 0 ≤ j′ + j′′ ≤ 2s − 2. Addition of the Equations (4.44) and (4.45)
yields

(i′ + i′′)s+ (j′ + j′′)t = st− s− t.

It also follows that s divides (j′ + j′′ + 1)t, hence s divides (j′ + j′′ + 1) and by the
inequality on j′ + j′′ above we must have j′ + j′′ +1 = s. Thus i′ + i′′ = −1 and precisely
one of i′ and i′′ is negative. The claim now follows.

2

Corollary 4.6.5 Let g = (s− 1)(t− 1)/2. Then, for m ≥ 2g − 1,

dimension of L(m) = m+ 1− g (4.46)

Proof: Equation (4.45) has no non-negative solutions for r < 0 and, by Lemma 4.6.4,
Equation (4.44) will then have a non-negative solution. Thus we can find non-negative
solutions to is + jt = m (see (4.42)) for m > st − s − t = 2g − 1 and the dimension of
L(m) will increase as a function of m for m ≥ 2g. This increase is always by 1, because
the relation is+ jt = m can not have two solutions with 0 ≤ j < s.

It remains to prove that the dimension of L(2g − 1) is equal to g. But by Lemma 4.6.4,
for every 0 ≤ r ≤ g−1, precisely one of Equations (4.44) and (4.45) has a solution (note
that substitution of the values 0 ≤ r ≤ g − 1 in (4.44) and (4.45) covers exactly the
whole range of right hand sides in between 0 and 2g− 1). The g solutions correspond to
the g monomials xiyj that form a basis for L(2g − 1).

2

Lemma 4.6.6 Any non-zero function u(x, y) in L(m) has at most m zeros in P .

Proof: From Definition 4.6.1 we recall that P is s subset of GF (q) × GF (q) and that
the points in P satisfy ys = f(x) with f(x) of degree t and gcd(s, q) = gcd(s, t) = 1.
It follows that an extension field of GF (q) exists, say GF (ql), that contains a primitive
s-th root of unity ζ. We shall show that even among the points in P ′ = {(x, y) | ys =
f(x), x ∈ GF (ql), y ∈ GF (ql)} the function u(x, y) will have at most m zeros.

The points of P ′ can be divided in classes P ′x, each class containing the points with a
fixed x-coordinate. If x is a zero of f(x), the class P ′x contains one element: (x, 0). For
x with f(x) 6= 0, the class P ′x is equal to {(x, y), (x, ζy), . . . , (x, ζs−1y)} and contains
s elements. Now, consider the classes in which the zeros of u(x, y) are contained. We
clearly find the same classes if we consider the zeros of the function:

u∗(x, y) = u(x, y) · u(x, ζy) · · ·u(x, ζs−1y). (4.47)
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By (4.42) one can write u(x, y) as

u(x, y) =
∑

0≤i,0≤j<s,is+jt≤m

ui,jx
iyj, ui,j ∈ GF (q).

If in the evaluation in (4.47) of the product a term

ui0,j0x
i0yj0 · ui1,j1x

i1(ζy)j1 · · ·uis−1,js−1x
is−1(ζs−1y)js−1 ,

with i0 + i1 + . . .+ is−1 = i and j0 + j1 + . . .+ js−1 = j, occurs then so does the term

uis−1,js−1x
is−1yjs−1 · ui0,j0x

i0(ζy)j0 · · ·uis−2,js−2x
is−2(ζs−1y)js−2 ,

which is just the previous term multiplied by ζj0+j1+...+js−1 = ζj. For the same reason, this
term also occurs multiplied by each of ζ2j, . . . , ζ(s−1)j. It follows from 1+ζj+. . .+ζj(s−1) =
0, 1 ≤ j ≤ s− 1, that these s terms cancel, unless j is a multiple of s, say j = sj′.

We conclude that u∗(x, y) only consists of monomials of the form xi′yj′s. With the
substitution ys = f(x), we can eliminate y from the product (4.47) and write

u∗(x, y) = U(x, ys) = U(x, f(x)) = V (x).

After substitution of ys = f(x) in U , the monomial xi(ys)j′ is of degree i+ tj′ in x. This
degree satisfies

s(i+ tj′) = si+ tj

= (si0 + tj0) + (si1 + tj1) + . . .+ (sis−1 + tjs−1)

≤ m+m+ . . .+m = sm.

Thus V (x) is a polynomial in x of degree at most m and the zeros of u∗(x, y) in P ′ can
be grouped into at most m classes. A class P ′x with s elements contributes at most one
zero of u(x, y) (and at most one zero to each of the other u(x, ζky), 1 ≤ k ≤ s − 1). A
class P ′x of the form {(x, 0)} trivially contains at most one zero of u(x, y). So, each of
the at most m classes containing zeros of u(x, y) contributes at most one such zero in P .

2

We can now give the parameters of AG-codes (see Definition 4.6.1).

Theorem 4.6.7 Let C(P ,m) be an AG − code as defined in Definition 4.6.1. Let g
be given by Corollary 4.6.5 and let 2g − 1 ≤ m < n. Then, C(P ,m) has parameters
[n,m+ 1− g, n−m].

Proof: The length of C(P ,m) is simply equal to the cardinality of the set P . Since
m < n, Lemma 4.6.6 implies that the space L(m) contains no non-zero function that is
zero at all points in P . In particular the space L(m) and the code C(P ,m) are isomorphic
as vector spaces and they have the same dimension. With m ≥ 2g−1, the dimension now
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follows from Corollary 4.6.5. The minimum distance follows immediately from Lemma
4.6.6.

2

Comparison of the parameters of an AG-code with the Singleton bound (see Equation
(2.17)) shows that for small values of g the AG-codes are almost optimal. Larger values
of g will still yield good codes, provided that the curve P has many points.

Let C∗(P ,m) denote the dual code of C(P ,m). It is also called an AG-code. It can be
described using the same set of points P , but using a different vector space of functions.
For our purposes it is enough to realize that for the description of C∗(P ,m) (by means
of a generator matrix and a parity check matrix) it is enough to have a description of
C(P ,m). We shall now derive a decoding procedure for the dual code C∗(P ,m). From
Theorem 4.6.7 we already know that C∗(P ,m) is a q-ary code of length n and dimension
n−(m+1−g). Its minimum minimum distance will follow from the decoding procedure.

We need several lemmas. Let r = c + e be a received word, with c the transmitted
codeword in C∗(P ,m) and e the error vector. Let the points Pk, 1 ≤ k ≤ n, in P have
coordinates (xk, yk). It follows that

∑n
k=1 ckx

i
ky

j
k = 0 for the pairs (i, j) with is + jt ≤

m, 0 ≤ i, 0 ≤ j < s.

Definition 4.6.8 Define the degree of a monomial φ(x, y) = xiyj by is+ jt and assume
that the monomials φ(x, y) are put in order of increasing (see Corollary 4.6.5) degree.
Thus, if the space L(m) is of dimension M , we may write

L(m) = 〈φ1 = 1, φ2, . . . , φM〉.

For any pair of integers (i, j), we define the 1st order syndrome of the vector e as

Si,j =
n∑

k=1

ekx
i
ky

j
k (4.48)

and call is+ jt the degree of Si,j.

For any pair of positive integers (u, v) with φu(x, y) = xi1yj1 and φv(x, y) = xi2yj2 , we
define the 2nd order syndrome

Tu,v =
n∑

k=1

ekφu(Pk)φv(Pk) (4.49)

and call degree(φuφv) = (i1 + i2)s+ (j1 + j2)t the degree of Tu,v.

It follows from this definition that for all u, v ≥ 1

Tu,v = Si1+i2,j1+j2 . (4.50)

Using Equation (4.50) one can find the Si,j from the Tu,v and vice versa (take v = 1 to
go from Tu,v to Si,j). Note that by (4.41) each Si,j with j ≥ s can be expressed in terms
of the Si,j’s with j < s.
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If a 1st order syndrome Si,j of degree m exists it is unique if we choose it with 0 ≤
i, 0 ≤ j < s. There can be several 2nd order syndromes of a given degree. Indeed, Tv,u

and Tu,v are obviously equal to each other and there may be other pairs (u′, v′) with
degree(Tu′,v′) = degree(Tu,v). This fact will be exploited later.

Note that the 1st order syndrome Si,j of the error vector e and of the received vector
r is the same for the pairs (i, j) with xiyj ∈ L(m). So, from a received vector one can
directly compute the following 1st and 2nd order syndromes

Si,j, for is+ jt ≤ m, 0 ≤ i, 0 ≤ j < s,

Tu,v, for φu · φv ∈ L(m).

These are the syndromes of degree at most m.

Lemma 4.6.9 The error vector (e1, e2, . . . , en) is uniquely determined by the 1st order
syndromes Si,j, for i, j ∈ {0, 1, . . . , q − 2}. It can be computed with an inverse Fourier
transform.

Proof: Let 1 ≤ l ≤ n and let the coordinates (xl, yl) of Pl be non-zero, say xl = αg, yl =
αh. Since

∑q−2
i=0 a

i = 0 for a ∈ GF (q) \ {0, 1}, one has

q−2∑
i=0

q−2∑
j=0

Si,j · (αu)i · (αv)j =
q−2∑
i=0

q−2∑
j=0

n∑
k=1

ekx
i
ky

j
k(α

u)i(αv)j =

=
n∑

k=1

ek

q−2∑
i=0

(xkα
u)i

q−2∑
j=0

(ykα
v)j


=

{
0 if (u, v) 6= (−g,−h),
el if (u, v) = (−g,−h).

We leave the case xl = 0 or yl = 0 as an exercise to the reader.

2

It follows from this lemma that it is sufficient for the decoding of C∗(P ,m) to determine
the 1st order syndromes Si,j up to degree (q−2)(s+t). We shall show how the syndromes
Si,j with degree is + jt in {m + 1,m + 2, . . . , (q − 2)(s + t)} can be determined one by
one.

To obtain Si,j of degree m+ 1 we consider all Tu,v of degree m+ 1, i.e. all Tu,v with

φu · φv ∈ L(m+ 1) \ L(m). (4.51)

To compute these Tu,v’s, the crucial step is to put them in an array.
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Lemma 4.6.10 Let the matrix T(u,v) be defined as

T(u,v) = (Ti,j) 1≤i≤u,1≤j≤v.

Then matrix T(u,v) has rank at most τ = wH(e).

Proof: Let G(u) and G(v) be generator matrices for codes C(P , u∗) of dimension u and
C(P , v∗) of dimension v resp. (so L(u∗) = 〈φ1, φ2, . . . , φu〉, and L(v∗) = 〈φ1, φ2, . . . , φv〉).
Let ∆(e) denote the matrix with (e1, e2, . . . , en) on the main diagonal and zeros else-
where. We have by (4.49) that

T(u,v) = G(v) ·∆(e) ·G(u)T , (4.52)

and the rank of T(u,v) is obviously at most equal to τ .

2

We denote by T any sufficiently large array that contains each matrix T(u,v) as submatrix
in its upper-left corner. An upper bound on the size of T is (q−2)(s+ t)× (q−2)(s+ t).

Although the following lemma is stated for the submatrices of T, it will be clear from
the proof that it holds for the submatrices of any matrix.

Lemma 4.6.11 Let the positive integers u, v satisfy

rank T(u−1,v−1) = rank T(u−1,v) = rank T(u,v−1). (4.53)

Then, there exists a unique value for the entry Tu,v, such that

rank T(u,v) = rank T(u−1,v−1). (4.54)

Proof: It follows from rank T(u−1,v−1) = rank T(u,v−1) that coefficients αa, 1 ≤ a ≤ u−1,
exist such that Tu,b =

∑u−1
a=1 αaTa,b, 1 ≤ b ≤ v − 1. If Tu,v 6=

∑u−1
a=1 αaTa,v, the rank of

T(u,v) will obviously be one more than the rank of T(u−1,v−1). From this contradiction
with (4.54) the unique choice of Tu,v follows.

On the other hand, taking Tu,v =
∑u−1

a=1 αaTa,v, we obtain rank T(u,v) = rank T(u−1,v) =
rank T(u−1,v−1).

2

Definition 4.6.12 A pair (u, v) that satisfies (4.53), but fails (4.54) is called a discrep-
ancy of T.

A pair (u, v) with Tu,v satisfying (4.51) for which condition (4.53) holds is called a
candidate. A candidate is called correct if also condition (4.54) is fulfilled. Otherwise it
is called an incorrect candidate.

It is easy to show (by elementary row and column operations) that no row or column of
a matrix can contain two discrepancies. Another way to look at the discrepancies of T
(or any other matrix) is given by the following lemma.
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Lemma 4.6.13 The rank of T(u,v) equals the number of discrepancies among (i, j) with
1 ≤ i ≤ u, 1 ≤ j ≤ v.

A pair (u, v) satisfies (4.53) if and only if there are no discrepancies among (i, v), i < u
and (u, j), j < v.

Proof: Consider T(u,v) (start this procedure with the empty submatrix T(0,0)). As
long as rank T(u,v+1) = rank T(u,v), increase v by one (this argument also holds for
rows). If rank T(u,v+1) = rank T(u,v) + 1, there will be exactly one discrepancy among
the positions (i, v + 1), 1 ≤ i ≤ u. This is position (1, v + 1), if rank T(1,v) = 0 and
rank T(1,v+1) = 1, and position (i, v + 1) where i is the smallest/unique value with
rank T(i,v+1) = rank T(i,v) + 1. Note that i is less than or equal to u.

The second statement now follows from the first.

2

With the available information on the 2nd order syndromes it is possible to determine if
the pair (u, v) is a candidate, but not if it is a correct or an incorrect candidate. On the
assumption that a candidate is correct its value can be uniquely determined by Lemma
4.6.11.

In the decoding algorithm we shall consider all candidates (u, v) and simply assume
that they are correct (which may not always be the case). Then we determine the
syndromes Tu,v for these candidates by means of Lemma 4.6.11 and for each we compute
the corresponding Si,j of degree m (by (4.50)). Assuming that the number of errors τ is
limited, the number of discrepancies will also be limited by Lemmas 4.6.10 and 4.6.13.
Assuming that we can show that the number of correct candidates exceeds the number of
incorrect candidates, we can recongnize the correct value of Si,j among all the computed
Si,j’s with an easy majority vote.

Lemma 4.6.14 Let m ≥ 4g − 2. The array T contains N := m + 2 − 2g pairs (u, v)
satisfying (4.51). No two of these pairs lie in the same row or column.

Proof: Consider a pair (u, v) satisfying (4.51), i.e. φu · φv ∈ L(m + 1) \ L(m). Clearly
not both φu and φv can be in L(2g − 1), since then φu · φv ∈ L(4g − 2) ⊆ L(m).
Thus, by Lemma 4.6.5, we find g pairs (u, v) with φu ∈ L(2g − 1) (for each of these
u’s there is a unique v with φu · φv ∈ L(m + 1) \ L(m) because m + 1− degree (φu) ≥
m + 1 − (2g − 1) ≥ 2g) and, for the same reason, g pairs with φv ∈ L(2g − 1). For
φu, φv 6∈ L(2g− 1), we must have φu, φv ∈ L(m+ 1− 2g) \L(2g− 1). This gives another
m + 1 − 2g − (2g − 1) = m + 2 − 4g pairs, yielding a total of m + 2 − 2g pairs (u, v)
satisfying (4.51).

The second assertion also follows trivially, because from degree(Tu,v) = degree(Tu′,v′) it
follows that u = u′ if and only if v = v′.

2
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Lemma 4.6.15 Let D be the number of known discrepancies. Among the N pairs (u, v)
satisfying (4.51) are at least N − 2D candidates.

Proof: From the second statement in Lemma 4.6.13 we know that each of the N pairs
satisfying (4.51) is a candidate if it has no discrepancy in its row or column. By Lemma
4.6.14 no two of these N pairs occur in the same row or column. It follows that each of
the D discrepancies prevents at most two pairs from being a candidate.

2

Lemma 4.6.16 Among all candidates no more than τ −D discrepancies can occur.

Proof: The total number of discrepancies can not exceed the rank of the array T which is
at most τ . Since D discrepancies are already known (at pairs (u, v) with φu ·φv ∈ L(m)),
at most τ −D discrepancies can occur at pairs that are candidates.

2

Lemma 4.6.17 Let m ≥ 4g − 2 (as in Lemma 4.6.14) and 2τ < m+ 2− 2g. Then the
number of correct candidates T will exceed the number of incorrect candidates F .

Proof: This follows from the inequality

T + F ≥ N − 2D = m+ 2− 2g − 2τ + 2τ − 2D

> 2τ − 2D ≥ 2F,

where the first inequality follows from Lemma 4.6.15, the equality from Lemma 4.6.14,
the second inequality from the condition on τ, and the last inequality from Lemma 4.6.16.

2

We can now put all the steps of the decoding algorithm of AG-codes together.

Algorithm 4.6.18 (Decoding AG-codes) Let m ≥ 4g − 2 and let r = c + e be a
received word, where c ∈ C∗(P ,m) and e is an error vector of weight τ ≤ b(m+1−2g)/2c.

1. Compute the 1st order syndromes Si,j of r for all is+ jt ≤ m, 0 ≤ i, 0 ≤ j < s by
means of (4.48).

2. Compute the 2nd order syndromes Tu,v for all (u, v) with φu · φv ∈ L(m) by means
of (4.50).

3. For m′ = m + 1,m + 2, . . . , (q − 2)(s + t) determine the candidates (u, v) and
assume that they are all correct. For each candidate (u, v) compute Tu,v by means
of Lemma 4.6.11 and the corresponding Si,j of degree m′ with (4.50). The correct
value of Si,j is obtained by taking a majority decision over the obtained values. Use
the correct value of Si,j to compute all Tu,v of degree m′ in T.
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4. Compute the error vector e from the 1st order syndromes Si,j, 0 ≤ i, j ≤ q − 2, by
means of Lemma 4.6.9.

5. Put c = r − e.

Theorem 4.6.19 The code C∗(P ,m), with m ≥ 4g−2, has parameters [n, n−m−1+g,≥
m+ 2− 2g].

Proof: Since C∗(P ,m) is the dual code of the [n,m + 1 − g, n −m] code C(P ,m), it
has length n and dimension n −m − 1 + g. The decoding algorithm above shows that
the minimum distance is at least equal to m+ 2− 2g for m odd. This can however also
be shown to hold for m even.

2

Note that, just as as C(P ,m), also C∗(P ,m) satisfies the bound k + d ≥ n + 1 − g
(compare this with the Singleton bound (Equation 2.17).

For large q we need to compute a large number of Si,j’s before Lemma 4.6.17 can be
applied. To obtain all the required syndromes, Step 3 in Algorithm 4.6.18 needs to be
repeated many times. In this situation the following theorem is useful. It combines
the procedure that we have presented with another procedure, for which we refer to the
literature (see the remarks at the end of the section).

Theorem 4.6.20 For a curve with g ≥ 1, consider the matrix T (τ+g,τ+g). In general,
not all entries can be computed with the syndromes of the received vector. We look for a
linear relation among the known columns, i.e. for a solution of

T (τ+g,τ+g)a = 0,

where ai = 0 if the i-th column of T (τ+g,τ+g) contains an unknown entry.

If no nonzero solution a exists, it suffices in Step 3 of Algorithm 4.6.18 to compute only
the candidates (u, v) with 1 ≤ u, v ≤ τ + g. A majority decision among these will yield
the syndrome of degree m′. If a nonzero solution a does exist, the algorithm can be
terminated as follows.

Let f = a1φ1 + a2φ2 + . . . + aτ+gφτ+g. Then f(Pk) = 0, for ek 6= 0. Applying erasure
decoding to the zeros of f yields the error vector as a unique solution.

We omit the full proof, but make some observations. Note that a nonzero solution a can
be obtained as soon as all entries in the τ + 1-th column are known. The entry Tτ+g,τ+1

is thus the syndrome of highest degree that needs to be known. With Corollary 4.6.5 it
has degree at most (τ + g + g − 1) + (τ + 1 + g − 1). For 2τ < m + 2 − 2g the degree
is bounded by 2τ + 3g − 1 ≤ m + g. Thus, indeed not all the required entries can be
computed with the syndromes of the received vector, but it is only necessary to apply
Step 3 in Algorithm 4.6.18 with m′ = m+ 1,m+ 2, . . . ,m+ g.
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By then we know the first τ + 1 columns of Tτ+g,τ+g and we can obtain the function
f . Erasure decoding will succeed if the number of zeros of f is not too large. Say
f is a linear combination of φ, φ2, . . . , φl with al 6= 0. Thus, when this f has been
found, all entries in T (τ+g,l) are known. It also follows that we know all syndromes
of degree up to degree(φτ+gφl). Erasure decoding is thus applied with respect to a
code C∗(P , m̂) with m̂ = degree(φτ+gφl). By Theorem 4.6.7, this code has distance

d̂ ≥ degree(φτ+gφl)+2−2g. By Corollary 4.6.5, degree(φτ+g) ≥ 2g, so d ≥ degree(φl)+2.
By Lemma 4.6.6, the function f has at most degree(φl) zeros. Since this number is less
than the distance d̂, erasure decoding will yield the unique error vector.

Example 4.6.21 We consider an AG-code over GF (16). In Definition 4.6.1 we take
y5 = x2 + x + 1, so s = 5, t = 2 and g = (s − 1)(t − 1)/2 = 2. The set P contains 32
points. For m = 13 we obtain the code C(P , 13) with parameters [32, 12,≥ 19] and the
code C∗(P , 13) with parameters [32, 20,≥ 11].

Let a received word for the code C∗(P , 13) contain five errors. Thus τ = w(e) = 5.
Following Algorithm 4.6.18 and using Theorem 4.6.20, we arrive at the matrix T (7,7).
For each entry the degree of φuφv is given below:



0 2 4 5 6 7 8
2 4 6 7 8 9 10
4 6 8 9 10 11 12
5 7 9 10 11 12 13
6 8 10 11 12 13 14
7 9 11 12 13 14 15
8 10 12 13 14 15 16


.

Only the entries with degree 13 and less can be computed as 2nd order syndromes from
the 1st order syndromes and the parity check matrix. We determine each of the unknown
entries and start with 14. Among the known entries we look for discrepancies and for
our example we assume the error pattern is such that they are divided as follows



0 ∗ 0 0 0 0 0
∗ 0 0 0 0 0 0
0 0 0 ∗ 0 0 0
0 0 ∗ 0 0 0 0
0 0 0 0 0 0 14
0 0 0 0 0 14 #
0 0 0 0 14 # #


.

The whole array contains five discrepancies (marked as ∗), so one discrepancy is missing
and will occur at one of the unknown entries. The number of known discrepancies is
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D = 4. How many entries are of degree 14? Our matrix contains three, but in the
complete array there are four more in the top four rows and four more in the left four
columns. A total of N = 11. This agrees with N = m+ 2− 2g as in Lemma 4.6.14.

The next step is to determine the candidates: entries of degree 14 with no discrepancy
in their row or column. The three displayed entries of degree 14 are the only candidates.
Note that Lemma 4.6.15 tells us that there should be at least N − 2D = 3. Now
we assume that none of the candidates is a discrepancy, i.e. that all of the matrices
T (5,7), T (6,6), T (7,5) have rank four. Then the values of T5,7, T6,6, T7,5 can be computed.
Since we only miss one more discrepancy, at most one of the matrices T (5,7), T (6,6), T (7,5)

has rank five and thus at most one of the values of T5,7, T6,6, T7,5 is incorrect. We find at
least two values among T5,7, T6,6, T7,5 that agree and we take this to be the true value.

Next the entries of degree 15 can be determined and by then we can find a solution to
T (7,7)a = 0, since the rank is five and the six known columns must be dependent.

Remarks: The generalization by V.D. Goppa that was mentioned at the beginning
of this section appeared as ”Codes on algebraic curves,” Soviet Math. Dokl., vol. 24,
pp.170-172, 1981. There, Goppa defines the codes C∗(P ,m) in terms of differentials
on curves. The description of the codes C(P ,m) in terms of functions appears in later
papers. In a later paper, Tsfasman, Vlăduţ, and Zink showed that for q ≥ 49, well
chosen, infinite sequences of AG-codes exist that exceed the Gilbert-Varshamov lower
bound on the size of block codes (see Theorem 2.1.9).

The use of a so-called error-locating function f in Theorem 4.6.20 is called the basic
algorithm and was formulated in 1988 by the Danish mathematicians Justesen, Larsen,
Havemose, Elbrønd Jensen and Høholdt. It was later shown by Skorobogatov and Vlăduţ
that the basic algorithm applies to all AG–codes. Lemma 4.6.17 and Algorithm 4.6.18
are due to Feng and Rao. They considered a particular class of AG–codes. Duursma
proved that their ideas are applicable to all AG–codes. He also showed that it suffices
to consider the matrix T (τ+g,τ+g) by combining the two procedures in Theorem 4.6.20.
Ehrhard suggested a different procedure that uses Theorem 4.6.20, but that avoids the
determination of the unknown entries. All these results can be found in the IEEE
Transactions on Information Theory.

4.7 Problems

4.7.1 Let α be a primitive element of GF (q) and let n = q − 1. The q-ary code C of
length n is defined by

{(f(1), f(α), . . . , f(αn−1) | f ∈ GF (q)[x], degree(f) < k},

where k ≤ n.
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Show that C is a linear code and determine its dimension.

Show that C is a MDS code, i.e. meets the Singleton bound with equality.

Prove that C is a cyclic code.

4.7.2 Consider the factorization of x11 − 1 into irreducible factors over GF (3).

How many of these factors are there and what are their degrees?

What is the smallest extension field of GF (3) that contains all the zeros of x11−1?

Which field elements in this extension field are the zeros of the various irreducible
factors of x11 − 1?

4.7.3 Let C be a binary, narrow-sense BCH code of length 93 and designed distance 13.

What are the zeros of the generator polynomial of C?

What is the dimension of C?

What does the BCH-bound state about the actual minimum distance?

4.7.4 Let C be a binary, narrow-sense BCH code of length 15 and designed distance 5.

Determine the generator polynomial of C.

4.7.5 Let α be a primitive 33-rd root of unity. What is the smallest extension field of
GF (2) containing α?

Let C be the cyclic code with defining set {0, 1} with respect to α. What is the
dimension of C?

What does the BCH bound say about the minimum distance of C?

Prove that this bound is tight for C.

4.7.6 Consider the binary, cyclic code of length 15 with parity check matrix

H =

(
1 α α2 · · · αi · · · α14

1 α3 α6 · · · α3i · · · α3·14

)
,

where α is a zero of x4 + x+ 1 (see TableB.2).

What is the minimum distance of this code by the BCH-bound?

Let a received word have syndrome

(
α7

α14

)
.

What is the most likely corresponding error pattern?
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4.7.7 Let α be a primitive element in GF (26). Let Ci,j denote the binary code with
parity check matrix

Hi,j =

(
1 αi α2i · · · α62i

1 αj α2j · · · α62j

)
,

i.e. Ci,j has defining set {i, j} with respect to α.

Prove that C1,3 is equivalent to C5,15 under a coordinate transformation, but not
to C3,9.

4.7.8 Let C be a q-ary cyclic code of length n (so gcd(q, n) = 1) with generator polyno-
mial g(x) and parity check polynomial h(x).

Since gcd(g(x), h(x)) = 1 (why?), the extended version of Euclid’s Algorithm yields
polynomials a(x) and b(x) satisfying

a(x)g(x) + b(x)h(x) = 1.

Let i(x) = a(x)g(x) = 1− b(x)h(x). Prove that

a) i(x) is a codeword,
b) i(x)c(x) ≡ c(x) (mod xn − 1) for each codeword c(x) in

C,
c) modulo xn− 1, each codeword in C is a multiple of i(x)

and vice versa,
d) i2(x) ≡ i(x) (mod xn − 1),
e) A polynomial satisfying a) and b) is unique modulo xn−

1.

This element i(x) is called the idempotent of C. It generates C.

4.7.9 Let C be the smallest cyclic code of length n containing a given codeword a(x).
Show that the generator polynomial of C is given by g(x) = gcd(a(x), xn − 1).

4.7.10 Let C be the binary narrow-sense BCH code of length 31 with designed minimum
distance 7, so its generator polynomial is g(x) = m1(x)m3(x)m5(x). Let α be a
zero of m1(x) = x5 + x2 + 1 (see TableB.3).

Of a received word r(x) the syndrome is given by s1 = r(α) = α10, s3 = r(α3) = α22

and s5 = r(α5) = α25. Find the most likely error pattern in r.

4.7.11 Let C be the 23-ary Reed-Solomon code of length 7 with minimum distance 5.
Let GF (23) be generated by α satisfying α3 + α+ 1 = 0 (see TableB.1).

Suppose the vector r = (α3, α, 1, α2, 0, α3, 1) is received. Decode r with Euclid’s
Algorithm.
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4.7.12 Compute the number g as defined in Corollary 4.6.5 for Example 4.6.2 and Ex-
ample 4.6.3 and verify the claims in these examples about the dimension of the
space L(m).

4.7.13 Let s = 5 and t = 4. Give the dimension of the space L(m), for each m in the
range {0, 1, . . . , 15}.

4.7.14 Consider the same code as in Example 4.6.21 but now with m = 11, so d = 9. For
a received word the 1st order syndromes Si,j are computed and the corresponding
part of T is given by

T =

v 1 2 3 4 5 6 7 8 9 10 11
u 0 2 4 5 6 7 8 9 10 11 12
1 0 0 1 0 0 0 1 1 0 0 0
2 2 1 0 0 1 1 0 0 0
3 4 0 0 1 0 0 0
4 5 0 1 0 0 0
5 6 0 1 0 0
6 7 1 1 0
7 8 1 0
8 9 0 0
9 10 0
10 11 0
11 12

where the second row and column indices denote the degree of the corresponding
φu and φv. (The fact that all the entries above have binary values can not be
expected in general, but is done to keep the calculations manageable.)

1. Determine the known discrepancies and what is their number D?

2. Determine the pairs (u, v) with Tu,v of degree 12. Which Si,j can be computed
from these Tu,v’s?

3. Determine the candidates and compute the corresponding Tu,v’s under the
assumption that they are correct.

4. Determine the corresponding estimates of Si,j. What does the majority deci-
sion yield for Si,j.

5. Determine the value of Tu,v for all Tu,v of degree 12.

4.7.15 Consider the codes C(P ,m) in Example 4.6.3, for 1 ≤ m ≤ 8. Show that for
1 ≤ i ≤ 8

∑
P∈P

φi(P ) = 0.
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Use this to prove that for 1 ≤ m ≤ 7,

C∗(P ,m) = C(P , 8−m).
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Chapter 5

Burst correcting codes

5.1 Introduction; two bounds

In many applications, especially those where data are stored on a magnetic medium,
errors tend to occur in clusters rather than completely independently of each other.

Definition 5.1.1 In Vn(q) a vector e is called a burst of length b if it has the form

(0, 0, . . . , 0,
b︷ ︸︸ ︷

ei, ei+1, . . . , ei+b−1, 0, 0, . . . , 0), (5.1)

where ei 6= 0 and ei+b−1 6= 0.

The segment (ei, ei+1, . . . , ei+b−1) is called the burst pattern. Also, one says that this
burst starts at coordinate i.

Codes that can correct any burst of length up to b are called b-burst-correcting. In this
chapter we shall only be interested in linear b-burst-correcting codes.

Lemma 5.1.2 A linear code C is b-burst-correcting if and only if all bursts of length up
to b have distinct syndromes.

Proof: Clearly, if distinct bursts have distinct syndromes, one can correct them.

On the other hand, if bursts b1 and b2 of length at most b have the same syndrome,
their difference b1 − b2 will be a codeword! The received word b1 can now be written as
c1 + b1 with c1 = 0 in C, but also as c2 + b2 with c2 = b1 − b2 also in C. So C is not
b-burst-correcting.

2

Lemma 5.1.3 Let C be a linear b-burst-correcting code with parity check matrix H.
Then any two disjoint groups of b consecutive columns of H consist of 2b independent
vectors.
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Proof: If not, there exists a non-trivial dependency of the 2b columns, corresponding to
the two disjoint groups of b consecutive coordinates. This dependency can be represented
by two distinct bursts of length b each, say b1 and b2.

The dependency now reads like H(b1 + b2)
T = 0T . This implies that the bursts b1 and

−b2 have the same syndrome. This contradicts Lemma 5.1.2.

2

An immediate consequence of Lemma 5.1.3 is the following bound.

Theorem 5.1.4 (Reiger bound) Let C be a q-ary, k-dimensional, b-burst-correcting
code of length n. Then the redundancy r = n− k satisfies

r ≥ 2b, (5.2)

so |C| ≤ qn−2b.

In the sequel we shall often refer to the Reiger bound.

Many of the b-burst-correcting codes that will be constructed further on will be cyclic.
It turns out that they are able to correct all cyclic shifts of bursts of length up to b, in
particular those that start near the end and that end somewhere at the beginning of the
word, i.e. error patterns of the form:

(

b−(n−i)︷ ︸︸ ︷
e0, . . . , eb−(n−i)−1, 0, 0, . . . . . . , 0, 0,

n−i︷ ︸︸ ︷
ei, . . . , en−1), (5.3)

where i > n− b, ei 6= 0 and eb−(n−i)−1 6= 0.

Error vectors of the form (5.3) are called cyclic bursts and cyclic codes that can correct
all cyclic bursts of length up to b are called cyclic b-burst-correcting.

Again Lemma 5.1.2 can be applied to derive a bound.

Theorem 5.1.5 (Abramson bound) Let C be a q-ary, cyclic b-burst-correcting code
of length n. Then its redundancy r satisfies

n ≤ qr−b+1 − 1

q − 1
. (5.4)

Proof: Let us count the number of distinct non-zero cyclic bursts. Each one is defined
by its starting coordinate (n possibilities), a non-zero entry there (q−1 choices) followed
by b − 1 arbitrarily chosen coordinates. So their number is n(q − 1)qb−1. Now all these
vectors and also the 0-vector should have distinct syndromes. So

qr ≥ 1 + n(q − 1)qb−1.

Dividing this by qb−1 yields

qr−b+1 ≥ 1

qb−1
+ n(q − 1)
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5.2. TWO STANDARD TECHNIQUES

↓ ↓
c11 c12 · · · · · · c1n codeword c(1)

c21 c22 · · · · · · c2n codeword c(2)

...
...

...
...

ct1 ct2 · · · · · · ctn codeword c(t)

↓

Figure 5.1: Interleaving C at depth t.

and thus

qr−b+1 − 1 ≥ n(q − 1).

2

Cyclic, b-burst-correcting codes for which (5.4) holds with equality are called optimum.
They will be discussed in Section 5.5.

5.2 Two standard techniques

In this section two very widely used constructions will be given of binary, b-burst-
correcting codes. Both make use of error-correcting codes.

The first technique changes the order of the coordinates of several consecutive codewords
in such a way that a burst is spread out over the various codewords.

Let C be a code of length n and let t be some positive integer. Consider all t × n
matrices which have codewords in C as their rows. Read these matrices out columnwise
from top to bottom starting with the leftmost column. The resulting code will be
denoted by Intt(C); its length is tn. The process of constructing Intt(C) out of C is
called interleaving C at depth t. In Figure 5.1 the interleaving technique is depicted for
the t codewords c(i) = (ci1, ci2, . . . , cin), 1 ≤ i ≤ t.

Quite obviously a burst of length b in the interleaved code will affect each row of the
matrix (so each codeword c(i)) in at most db/te consecutive coordinates. This proves the
following theorem.

Theorem 5.2.1 Let C be a b-burst-correcting code in Vn and let Intt(C) be the inter-
leaved code with depth t. Then Intt(C) is a bt-burst-correcting code of length tn.

Sometimes one simply takes an e-error correcting code for C. In this way, one can also
correct more bursts in Intt(C), say of lengths Bj, 1 ≤ j ≤ l, as long as

∑l
j=1 dBj/te ≤ e.

It turns out that interleaving a cyclic code of length n results in a code that is again
cyclic.
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Theorem 5.2.2 Let C be a b-burst-correcting, cyclic code of length n and let Intt(C)
be obtained from C by interleaving it at depth t. Then Intt(C) is a cyclic code of length
tn.

Proof: Let g(x) be the generator matrix of C. We shall show that g(xt) is the generator
matrix of Intt(C).

Take a codeword in Intt(C) and let the rows of the corresponding t × n matrix be
c(i)(x) = a(i)(x)g(x), 1 ≤ i ≤ t.

The interleaved word c(x) is given by

c(x) = c11 + c21x+ · · ·+ ct1x
t−1 + c12x

t + · · ·+ ct,nx
tn−1

= c(1)(xt) + xc(2)(xt) + · · ·+ xt−1c(t)(xt)

= a(1)(xt)g(xt) + xa(2)(xt)g(xt) + · · ·+ xt−1a(t)(xt)g(xt)

=
(
a(1)(xt) + xa(2)(xt) + · · ·+ xt−1a(t)(xt)

)
g(xt)

= a(x)g(xt),

so it is indeed in the cyclic code of length tn generated by g(xt).

Clearly the reverse is also true: each codeword a(x)g(xt) in the code generated by g(xt)
can be written as(

a(1)(xt) + xa(2)(xt) + · · ·+ xt−1a(t)(xt)
)
g(xt)

and can thus be obtained by interleaving t codewords in C.

2

The second technique of making b-burst-correcting codes is to start with an e-error-
correcting code C of length n over GF (2m) and write each coordinate as a binary vector
by using a binary basis of GF (2m). In this way one obtains a binary code of length nm
with the same cardinality as C. A burst of length (e − 1)m + 1 will affect at most e
(consecutive) m-tuples, so at most e coordinates of the code C. In other words, we have
obtained a (e− 1)m+ 1-burst-correcting code.

Most often a (shortened) Reed-Solomon code or an extended Reed-Solomon code is
used for this purpose, because these codes meet the Singleton bound (see (2.17) for
b = (d− 1)/2 independent errors with equality. Note that they can correct more bursts
of shorter lengths too. Also note that they meet the Reiger bound (see (5.2) for bursts
of length b = (d− 1)/2 with equality.

Note that this construction is a special case of the concatenated code construction (see
Theorem 3.1.7). The inner code simply is the [m,m, 1] code Vm.

The two constructions in this section may be combined to obtain codes that can correct
even longer bursts.
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5.3 Fire codes

In this section a class of cyclic, b-burst-correcting codes will be constructed by more
algebraic methods.

The burst pattern and starting point of a cyclic burst b(x) of length b can easily be
denoted by B(x) and i, 0 ≤ i ≤ n− 1, satisfying

b(x) = B(x)xi, B(0) 6= 0, degree(B(x)) ≤ b− 1. (5.5)

Let the period of a polynomial f(x) with f(0) 6= 0 be defined as the smallest positive
integer v for which f(x) divides xv − 1.

Definition 5.3.1 The q-ary Fire code is a cyclic code in Vn(q) with generator polynomial
g(x) = (x2b−1 − 1)f(x), where

1. f(x) is an irreducible polynomial of degree m with m ≥ b,

2. f(x) does not divide x2b−1 − 1,

3. n is the smallest positive integer such that g(x) divides xn − 1.

Note, that the second condition in Definition 5.3.1 is equivalent to

2’. gcd(f(x), x2b−1 − 1) = 1,

because f(x) is irreducible.

Lemma 5.3.2 The Fire code, defined in Definition 5.3.1, has length n = lcm[v, 2b− 1],
where v is the period of f(x).

Proof: Let v be the period of f(x).

It follows from 2’. that the statement g(x) divides xn − 1 is equivalent to the statement
that both f(x) and x2b−1 − 1 divide xn − 1. This in turn is equivalent to saying that
both v and 2b− 1 must divide n. However, this is equivalent to saying that lcm[v, 2b− 1]
divides n. Since n was chosen to be minimal, the Lemma now follows.

2

Theorem 5.3.3 The Fire code, defined in Definition 5.3.1, is b-burst-correcting.

We shall give a proof of this theorem by deriving a b-burst-correcting decoding algorithm
for the Fire code.

Let r(x) be a received word and assume that r(x) = c(x)+b(x), where c(x) is a codeword
in the Fire code and b(x) a non-zero burst of length at most b. Determine s1(x) and
s2(x), defined by:

s1(x) ≡ r(x) ≡ b(x) (mod x2b−1 − 1), degree(s1(x)) < 2b− 1. (5.6)

87



CHAPTER 5. BURST CORRECTING CODES

s2(x) ≡ r(x) ≡ b(x) (mod f(x)), degree(s2(x)) < m. (5.7)

Writing b(x) = xiB(x) as in (5.5), it follows that

s1(x) = xi′B(x),

where i ≡ i′ (mod 2b− 1), 0 ≤ i′ < 2b− 1 and the exponents have to be taken modulo
2b − 1. The nice thing now is that i′ and B(x) uniquely follow from s1(x). Indeed, let
l be the longest gap in s1(x), when the exponents are viewed cyclicly modulo 2b− 1 (a
gap of length l is a sequence of l consecutive zero-coordinates, bordered on both sides
by a non-zero element). Because B(x) has length at most b, this l will be at least
(2b − 1) − b = b − 1 but possibly more. However, there cannot be two distinct gaps of
length at least b− 1, because (b− 1) + 1 + (b− 1) + 1 = 2b which is more than the 2b− 1
different exponents we are considering. Note, that this gap of length at least b − 1 will
end at coordinate i′ − 1 and that B(x) is given by x−i′s1(x) (mod x2b−1 − 1).

So, of the burst b(x) = xiB(x) that we want to determine, we know already B(x) and
i′ ≡ i (mod 2b− 1). Write i = i′ + j(2b− 1).

We know that

s2(x) ≡ xi′+j(2b−1)B(x) (mod f(x)), 0 ≤ j <
v

gcd(v, 2b− 1)
.

The question that remains is: does this relation uniquely determine j modulo
v/ gcd(v, 2b− 1)? The answer is affirmative.

Indeed, by the irreducibility of f(x) and since B(x) 6= 0, if xi′+j(2b−1)B(x) ≡
xi′+j′(2b−1)B(x) (mod f(x)), then also (x(j−j′)(2b−1) − 1)B(x) will be divisible by f(x).
Since f(x) has degree at least b, one even has that (x(j−j′)(2b−1) − 1) must be divisible
by f(x). So v divides (j − j′)(2b− 1). It follows that j ≡ j′ (mod v/ gcd(v, 2b− 1)).

We conclude that j can be found by evaluating xi′+j(2b−1)B(x) modulo f(x) for j =
0, 1, · · · , v − 1 until it is equal to s2(x).

The above method of trying out j = 0, j = 1, and so on, can be replaced by a single
calculation. Let α be a zero of f(x), so α has order v. Since B(x) has degree less
than m and f(x) is irreducible, it follows that B(α) 6= 0. So, the value of j modulo
v/ gcd(v, 2b− 1) can now directly be computed from

αi′+j(2b−1)B(α) = s2(α), (5.8)

Of course the above calculation has to be performed in GF (qm), an extension field of
GF (q) that contains the zeros of f(x). Also, note that (2b− 1)j is uniquely determined
modulo (2b−1)v/ gcd(v, 2b−1) = lcm[v, 2b−1] = n. This proves that also the burst-start
is uniquely determined from the syndrome. In other words, we have shown that the Fire
code generated by g(x) = (x2b−1 − 1)f(x) is indeed b-burst-correcting.

We summarize the above decoding algorithm.
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Algorithm 5.3.4 (Decoding Fire codes) Let r(x) be the received word.

1. Compute the syndrome s1(x) and s2(x) from (5.6) and (5.7).
If s1(x) = 0 and s2(x) = 0, put c(c) = r(x) and STOP.

2. Determine the burst pattern B(x) and the starting point i modulo 2b− 1, denoted
by i′, from the unique gap of length at least b− 1 in s1(x) (mod x2b−1 − 1).

3. Find j (mod v/ gcd(v, 2b− 1)) satisfying (5.8).

4. Put c(x) = r(x)− xi′+j(2b−1)B(x).

Fire codes have redundancy r = m + 2b − 1 ≥ 3b − 1. Compare this with the Reiger
bound r ≥ 2b.

Example 5.3.5 Consider the binary Fire code with b = 3, generated by g(x) = (x5 −
1)f(x) where f(x) is the primitive polynomial 1 + x+ x3. Since f(x) has period 7, this
Fire code has length n = 5× 7 = 35 and dimension k = 35− 5− 3 = 27.

Now, let s1(x) = 1 + x3 and s2(x) = 1 + x be the syndrome of a received word r(x).
Following Decoding Algorithm 5.3.4, we find the gap of length at least 2 in s1(x) at
0x+0x2. So the burst starts at i = 3+j5 and has pattern 1+x2, because x3(1+x2) ≡ 1+x3

(mod x5 − 1). To find j one has to solve

α3+j5(1 + α2) = 1 + α.

Now 1 + α2 = α6 and 1 + α = α3, so j follows from 3 + j5 + 6 ≡ 3 (mod 7), which has
j = 3 as solution.

We conclude that the burst in r(x) is given by x18(1 + x2).

Example 5.3.6 Consider the binary Fire code with b = 4, generated by g(x) = (x7 −
1)f(x) with f(x) = 1 + x+ x2 + x4 + x6. Note that f(x) has period 21, so this Fire code
has length n = lcm[7, 21] = 21.

Let s1(x) = x + x3 + x4 and s2(x) = x3 + x5 be the syndrome of a received word r(x).
Following Decoding Algorithm 5.3.4, we find (modulo x7−1) the gap of length at least 3
in s1(x) at 0x5 +0x6 +0x0. So the burst starts at i = 1+ j7 and has pattern 1+x2 +x3.

Consider GF (26) = GF (2)[x]/(p(x)), where p(x) = 1 + x+ x6 is a primitive polynomial.
Let ω be a zero of p(x). One can easily check that α = ω3 is a zero of f(x).

To find j one has to solve

α1+j7(1 + α2 + α3) = α3 + α5.

Now 1 + α2 + α3 = 1 + ω6 + ω9 = ω49 and α3 + α5 = ω9 + ω15 = ω10, so j follows from

3(1 + j7) + 49 ≡ 10 (mod 63),

which has j ≡ 1 (mod 3) as solution.

We conclude that the burst in r(x) is given by x8(1 + x2 + x3).
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5.4 Array codes

The interleaving technique in Theorem 5.2.1 shows that one can get burst-correcting
codes by filling a matrix rowwise and reading it out columnwise. In this section we con-
sider binary matrices with even-weight rows and columns and obtain a burst-correcting
code by reading the entries out in a particular way.

Definition 5.4.1 Let n1 and n2 be two positive integers with n2 ≥ n1. The set of all
binary n1×n2 matrices with even row and column sums is called the (n1, n2) array code
A(n1, n2).

Clearly, A(n1, n2) is a linear, even-weight code of length n1n2 and dimension (n1−1)(n2−
1). For instance, the bits in the upper left (n1 − 1)× (n2 − 1) submatrix can be viewed
as a set information symbols. The other bits can be uniquely determined from the even
parity sums of the rows and columns.

It is also obvious that A(n1, n2) cannot contain a word of weight 2, but does contain
weight 4 codewords (for instance fill the upper left 2×2 submatrix with ones) soA(n1, n2)
is a [n1n2, (n1 − 1)(n2 − 1), 4] code.

In terms of redundancy, A(n1, n2) is a poor 1-error-correcting code, the decoding of a
single error on the other hand is extremely simple. Indeed let r be a received vector and
let R be the corresponding n1× n2 matrix. Let R = C +E, with C in A(n1, n2) and let
E have a one at position (s, t), so Est = 1, and zeros elsewhere.

Compute the horizontal syndrome h defined by hi =
∑

1≤j≤n2
Rij =

∑
1≤j≤n2

Eij, 1 ≤ i ≤
n1 and the vertical syndrome v defined by vj =

∑
1≤i≤n1

Rij =
∑

1≤i≤n1
Eij, 1 ≤ j ≤ n2.

It follows that (s, t) is uniquely determined from the syndrome

h = (0, 0, . . . , 0,
s
1, 0, . . . , 0)

and

v = (0, 0, . . . , 0,
t
1, 0, . . . , 0).

To study the burst-correcting capability of the array codes, one first needs to define a
particular read out. Here, we shall only study the diagonalwise read out, starting at
the top-left position, each diagonal followed by the adjacent one to the right, while the
column indices have to be taken modulo n2. This read out will be called the +1-read
out. In Figure 5.2 the +1-read out is depicted for the A(5, 6) code.

Other read outs are of course possible. In particular the +s-read out, where each diagonal
is followed by the diagonal s further to the right (and where gcd(s, n2) = 1), can be found
in the literature.

So for an element in A(n1, n2) we now have two representations: The matrix
(Aij)1≤i≤n1,1≤j≤n2 and the vector a = (a0, a1, . . . , an−1), with n = n1n2.
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↘ ↘

0 5 10 15 20 25
26 1 6 11 16 21
22 27 2 7 12 17
18 23 28 3 8 13
14 19 24 29 4 9

↘

Figure 5.2: The read out for A(5, 6).

One can easily check that they are related in the following way

Aij = an1(j−i)+i−1, (5.9)

where the indices of the coordinates of a have to be taken modulo n.

The array code A(n1, n2) with the +1-read is not able to correct all bursts of length
up to n1. To see this, consider the syndrome v = 0 and h = (1, 1, 0, 0, . . . , 0). The error
pattern E(j) defined by E1j = E2j = 1 and zeros elsewhere will yield this syndrome for
all 1 ≤ j ≤ n2. However, this error pattern is a burst of length n1, starting (with a 1) at

position (2, j) and with burst pattern (1,

n1−2︷ ︸︸ ︷
0, 0, · · · , 0, 1). For instance, ones at coordinates

1 and 5 in Figure 5.2 and zeros elsewhere corresponds to a burst of length 5. Its syndrome
is identical to the burst of length 5 with its ones at coordinates 6 and 10.

Lemma 5.4.2 Let A(n1, n2), n2 > n1, be the array code with the +1-read out. If n2 ≤
2n1 − 4, then A(n1, n2) is not able to correct all bursts of length up to n1 − 1.

Proof: It suffices to give two distinct bursts of length at most n1 − 1 which have the
same syndrome.

Consider the burst of length b, 2 ≤ b ≤ n1 − 1, starting at coordinate 0, so at position

(1, 1), and with pattern (1,

b−2︷ ︸︸ ︷
0, 0, · · · , 0, 1). So, its second 1 is at coordinate b − 1, i.e. at

position (b, b). The syndrome of this burst can also be obtained by putting a one at
position (1, b) and a second 1 at position (b, 1).

These two positions correspond by (5.9) to the coordinates (1 − b)n1 + b − 1 = n1n2 −
(b − 1)n1 + (b − 1) and (b − 1)n1. The question to be answered is: is there a value for
b, 2 ≤ b ≤ n1−1, for which these two coordinates are in a burst of length at most n1−1.

Now the distance between these two coordinates u and v is min{v−u, u− v}, where the
differences have to be computed modulo n. So we want to find b, 2 ≤ b ≤ n1 − 1, for
which

n1n2 − b+ 1 ≤ (2n1 − 1)(b− 1) ≤ n1n2 + b− 1.
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This reduces to

n2 + 2

2
≤ b ≤ n2 + 2

2
+

n2

2(n1 − 1)
.

From n1 < n2, it follows that n2/(2(n1 − 1)) ≥ 1/2, so b = d(n2 + 2)/2e is a solution to
these inequalities.

Moreover, n2 ≤ 2n1−4 implies that (n2 +2)/2 ≤ n1−1, so b = d(n2 +2)/2e also satisfies
the condition b ≤ n1 − 1.

2

Lemma 5.4.2 gives a necessary condition for the array code A(n1, n2), n2 > n1, to be
(n1 − 1)-burst-correcting. This condition turns out to be sufficient.

Theorem 5.4.3 The array code A(n1, n2), n2 > n1, is (n1 − 1)-burst-correcting if and
only if n2 ≥ 2n1 − 3.

Instead of proving Theorem 5.4.3 directly we shall derive an extremely simple decoding
algorithm. In view of Lemma 5.4.2 we may assume that n2 ≥ 2n1 − 3.

Let R = C+B be a received word, where C is a codeword and B be a burst of length at
most n1− 1. Compute the syndromes h and v of R, which is the same as the syndromes
of the burst B. We only need to discuss the case that h and v are not both equal to the
all-zero vector.

It follows from the +1-read out that a burst of length n1 will affect each row or column
at most once. In other words, in the computation of the syndrome there will never be
a cancelation of errors! Or, to say it differently, if hi = 1, there is exactly one error in
the i-th row and a row contains no errors if hi = 0. The same holds for the columns. It
follows from this observation that h and v have the same Hamming weight, say w.

Next, view the coordinates of v cyclicly. Since the burst B affects at most n1 − 1
consecutive columns, v will contain a gap of zeros of length at least n2− b ≥ n2−n1 +1.
But there cannot be two gaps of length at least n2 − n1 + 1, because this would imply a
total number of coordinates of at least (n2 − n1 + 1) + 1 + (n2 − n1 + 1) + 1, which is
more than n2 under the condition n2 ≥ 2n1 − 3.

Let the coordinate immediately to the right of the gap be j1 (so vj1 = 1 and vj1−l = 0 for
1 ≤ l ≤ (n2−n1 +1) and let the subsequent 1-coordinates in v have indices j2, j3, . . . , jw.
Let 1 ≤ i1 < i2 < · · · < iw ≤ n1 denote the 1-coordinates in h.

We shall now show that the errors in B are at positions (il, jl), 1 ≤ l ≤ w. It suffices to
show that Ei1,j1 = 1.

Assume the contrary, so assume that Ei1,j1 = 0. It follows from hi = 0 for i < i1 that
the error in column j1 is at a position (u, j1) with u > i1. Similarly it follows from
vj1−l = 0 for 1 ≤ l ≤ (n2 − n1 + 1) that the error in row i1 is at position (i1, v) with
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j1 < v ≤ j1 + n1 − 2, So, E(i1,j1) 6= 1 implies that E(u,j1) = 1 for some u ≥ i1 and that
E(i1,v) = 1 for some j1 ≤ v ≤ j1 + n1 − 2.

The proof will be finished by showing that the positions (u, j1) (i1, v) under these con-
ditions will never lie in the same burst of length at most n1 − 1. The reason for this is
that the distance between these positions is at least n1− 1. Because the coordinates are
taken modulo n1n2, one needs to compute the minimum of two distances.

By (5.9)), these distances are

|n1n2 − {(v − i1)n1 + i1 − 1}+ {(j1 − u)n1 + u− 1}| =

|n1n2 − (v − j1)n1 − (u− i1)(n1 − 1)|.

and

|(v − j1)n1 + (u− i1)(n1 − 1)|.

The second expression is clearly always greater than or equal to n1 − 1. To prove the
same inequality for the first expression, we use that the inequalities on u and v imply
that v− j1 ≤ n1− 2 and u− i1 ≤ n1− 1. So the first distance between the two positions
(u, j1) and (i1, v) is at least

n1n2 − (n1 − 2)n1 − (n1 − 1)2,

which, by the inequality n2 ≥ 2n1 − 3, is at least

n1(2n1 − 3)− (n1 − 2)n1 − (n1 − 1)2 = n1 − 1.

So the two positions (u, j1) and (i1, v) with u > i1 and j1 < v ≤ j1 + n1 − 2 have actual
distance at least n1 − 1, so they are not in the same burst of length at most n1 − 1.

This proves the correctness of the following decoding algorithm.

Algorithm 5.4.4 (Decoding array codes) Let R(x) be the received word.

1. Compute the horizontal syndrome h defined by hi =
∑

1≤j≤n2
Rij =∑

1≤j≤n2
Eij, 1 ≤ i ≤ n1 and the vertical syndrome v defined by vj =

∑
1≤i≤n1

Rij =∑
1≤i≤n1

Eij, 1 ≤ j ≤ n2.

2. Let 1 ≤ i1 < i2 < · · · < iw ≤ n1 denote the 1-coordinates in h.

3. Find the gap of length at least n2 − n1 + 1 in v, where the coordinates have to be
taken modulo n2. Let the gap end at coordinate j1 − 1.

4. Let j1 < j2 < · · · < jw ≤ j1 + n1 − 2 denote the 1-coordinates in v.

5. The burst B(x) is one at the positions (il, jl), 1 ≤ l ≤ w and zero everywhere else.

6. C(x) = R(x) + B(x).
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We shall demonstrate this algorithm in an example. Let n1 = 5, n2 = 7 and let the
received word be given by

1 1 1 0 0 1 1
0 1 1 0 0 1 0
1 0 0 1 1 1 0
0 1 1 0 1 1 1
0 1 0 0 1 0 0

We follow Algorithm 5.4.4

1. h = (1, 1, 0, 1, 0) and v = (0, 0, 1, 1, 1, 0, 0).

2. i1 = 1, i2 = 2, i3 = 4.

3. v has the gap of length at least 3 at coordinates 6, 7, 1 and 2. So, j1 = 3.

4. j1 = 3, j2 = 4, j3 = 5.

5. The burst B(x) is one at the positions (1, 3), (2, 4), (4, 5).

So the burst is given by

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0

This burst starts at position (4, 5), which is coordinate 8 and has pattern (1, 0, 1, 1).

5.5 Optimum, cyclic, b-burst-correcting codes

In this section we discuss the existence of optimum, cyclic binary b-burst-correcting
codes, see Section 5.1. These codes have length n = 2m−1 and redundancy r = m+b−1.
From the Reiger bound it follows that m ≥ b+ 1.

Let us first discuss some small cases.

An optimum, cyclic, 1-burst-correcting code: n = 2m − 1, r = m,m ≥ 2.
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Since b = 1, we are really looking for a 1-error-correcting code of length n = 2m − 1.
From Theorem 4.2.1 we know that this code has parity check matrix

H =
(

1 α α2 · · · · · · αn−1
)
,

where α is a primitive element in GF (2m). Let p(x) be the minimal polynomial of α. It
follows that the code has as generator polynomial the primitive polynomial p(x).

An optimum, cyclic, 2-burst-correcting code: n = 2m − 1, r = m+ 1,m ≥ 3.

Take again a primitive polynomial p(x) of degree m and consider the cyclic code with
generator polynomial g(x) = (1+x)p(x). Clearly, this code has the right redundancy. It
can correct every burst of length at most 2, as we shall now show. Let α be a zero of
p(x). The parity check matrix H of this code has the form

H =

(
1 1 1 · · · · · · 1
1 α α2 · · · · · · αn−1

)
.

The syndrome of the burst b(x) of length 1 starting at coordinate i (so b(x) = xi) is
simply s0 = b(1) = 1, and s1 = b(α) = αi.

A burst b(x) of length 2 starting at coordinate i must have the form b(x) = xi + xi+1, so
it has syndrome s0 = b(1) = 0, and s1 = b(α) = αi + αi+1 = αi(1 + α). So we have the
following decoding algorithm.

Algorithm 5.5.1 (Decoding an opt. cyclic 2-burst-corr. code) Let r(x) be the
received word. Compute the syndrome s0 = r(1) and s1 = r(α).

• If s0 = s1 = 0, put b(x) = 0.

• If s0 = 1 and s1 = αi, put b(x) = xi.

• If s0 = 0 and s1 = αj, put b(x) = xi(1 + x), where i is defined by αi(1 + α) = αj.

Put c(x) = r(x) + b(x).

Let us now look for an optimum, cyclic, 3-burst-correcting code; so n = 2m − 1, r =
m+ 2,m ≥ 4. In view of the preceding it is natural to try g(x) = e(x)p(x) as generator
polynomial, where p(x) is a primitive polynomial of degree m and e(x) has degree 2.
Since g(x) has to divide xn − 1 it follows that e(x) must be equal to 1 + x+ x2.

On the other hand, 1 + x + x2 = (x3 − 1)/(x − 1) and x3 − 1 divides x2m−1 − 1 if and
only if m is even!

There are however even more restrictions. Consider the bursts b1(x) = 1 and b2(x) =
(1+x)xi, 0 ≤ i < n. They need to have different syndromes, so their difference (or sum)
should not be divisible by (1 + x+ x2)p(x).
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Now, b1(x)+ b2(x) = 1+(1+x)xi, 1 ≤ i < n is divisible by 1+x+x2 = (x3−1)/(x−1)
if and only if i ≡ 1 (mod 3). Thus, to make the code 3-burst-correcting, we have the
following necessary condition.

i ≡ 1 (mod 3) ⇒ (1 + x)xi 6≡ 1 (mod p(x)).

Since p(x) is a primitive polynomial, one can write 1 + x ≡ xa (mod p(x)) for some
1 ≤ a ≤ n− 1. The condition above now reduces to

i ≡ 1 (mod 3) ⇒ xa+i 6≡ 1 (mod p(x)).

i.e.

i ≡ 1 (mod 3) ⇒ a+ i 6≡ 0 (mod 2m − 1).

Since 3|(2m − 1), one simply gets a 6≡ 2 (mod 3).

Of course we only checked possible problems with the burst patterns 1 and 1 + x. One
really has to do this for all pairs of burst patterns, i.e. for all pairs of polynomials of
degree less than 3, that have constant term 1. It turns out that no further conditions do
arise. This proves:

Theorem 5.5.2 Let p(x) be a primitive polynomial of degree m. Then g(x) = (1 + x+
x2)p(x) generates an optimum, cyclic 3-burst-correcting code if and only if

1. m is even,

2. a, defined by 1 + x ≡ xa (mod p(x)), is not congruent to 2 modulo 3.

Example 5.5.3 The cyclic code of length 15 generated by g(x) = (1+x+x2)(1+x+x4)
is an optimum, 3-burst-correcting code, because 1 +x ≡ x4 (mod 1 +x+x4) and 4 6≡ 2
(mod 3).

Questions that arise very naturally are:

• Is it necessary to start with g(x) = e(x)p(x), where p(x) is primitive of degree m?

• Are there always primitive polynomials p(x) of even degree m for which a 6≡ 2
(mod 3), where 1 + x ≡ xa (mod p(x))?

• How to deal with b ≥ 4?

There are very satisfactory answers to all these questions and they will be given here.
Unfortunatly, it leads too far to prove all these statements. The interested reader can
find the proofs in On the existence of optimum cyclic burst-correcting codes, K.A.S.
Abdel-Ghaffar, e.o., IEEE Trans. Inform. Theory, vol. IT-32, pp.768-775, Nov. 1986.

Theorem 5.5.4 (Elspas-Short) If g(x) generates an optimum, cyclic b-burst-
correcting code of length n = 2m − 1, then g(x) = e(x)p(x) with
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1. degree(e(x)) = b− 1, e(0) = 1, e(x) has no multiple factors.

2. p(x) is a primitive polynomial of degree m,m ≥ b+1, where m is a multiple of me,
defined as the smallest me with e(x)|(x2me−1 − 1).

All the conditions in the above theorem follow from the simple fact that g(x)|(xn − 1)
(and the Reiger bound), except for the statement that g(x) contains a primitive factor
of degree m.

Definition 5.5.5 The AES-conditions (short for Abramson-Elspas-Short conditions) on
the primitive polynomial p(x) in Theorem 5.5.4 are all the conditions that arise from

B1(x) ≡ xiB2(x) (mod e(x)) ⇒ B1(x) 6≡ xiB2(x) (mod p(x)),

for all 0 ≤ i < n and for all burst patterns B1(x) and B2(x) of degree at most b− 1 with
B1(x) 6= B2(x) and both unequal to e(x).

Theorem 5.5.6 A polynomial g(x) generates an optimum, cyclic b-burst-correcting code
of length n = 2m − 1, if and only if it can be factored into g(x) = e(x)p(x) which satisfy
the conditions in Theorem 5.5.4 and the AES-conditions.

Theorem 5.5.7 Let e(x) be a square-free polynomial of degree b−1 with e(0) = 1. Then,
for all m sufficiently large and divisible by me, a primitive polynomial p(x) of degree m
exists such that e(x)p(x) generates an optimum, cyclic b-burst-correcting code of length
n = 2m − 1.

For two special cases even stronger results hold.

Theorem 5.5.8 For each even m,m ≥ 4, a primitive polynomial p(x) of degree m exists
such that (1+x+x2)p(x) generates an optimum, cyclic 3-burst-correcting code (of length
n = 2m − 1).

Theorem 5.5.9 For each even m,m ≥ 10, a primitive polynomial p(x) of degree m
exists such that (1 + x3)p(x) generates an optimum, cyclic 4-burst-correcting code (of
length n = 2m − 1).

The smallest degree primitive polynomial p(x) of degreem such that (1+x)(1+x+x3)p(x)
generates an optimum, cyclic 5-burst-correcting code of length n = 2m − 1, is

p(x) = 1 + x+ x2 + x3 + x5 + x9 + x10 + x13 + x15.

5.6 Problems

5.6.1 By writing the coordinates of the words of an e-error-correcting, 16-ary Reed-
Solomon code as binary words of length 4, one obtains a b-burst-correcting binary
code.

What should e be to get b = 9? And for b = 10?
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5.6.2 Interleave the binary Fire code generated by (x5−1)(1+x+x3) at depth 5. What
kind of burst correcting code does one obtain?

5.6.3 Consider the binary Fire code generated by g(x) = (x7 − 1)(x4 + x+ 1). What is
the length of this Fire code and what is the length of the bursts that it can correct.

Let r(x) be a received word and let r(x) modulo g(x) be given by x+x2+x4+x5+x8.
Decode r(x).

Compare the redundancy of this code with the Reiger bound.

5.6.4 Consider the array code A(7, 10). Give two bursts of length at most 6 that have
the same syndrome.

5.6.5 Decode the received word R which is equal to a codeword C from A(6, 9) plus a
burst B of length at most 5, and where

R =

1 0 1 1 1 0 1 1 1
1 1 0 0 0 1 1 0 0
0 1 1 0 0 1 1 0 1
1 0 0 1 1 1 0 1 1
0 0 1 1 1 1 0 1 0
1 0 1 1 0 0 0 0 0

5.6.6 The binary, cyclic code of length 15 generated by g(x) = (1 + x+ x2)(1 + x+ x4)
is optimum, 3-burst correcting by Example 5.5.3. Decode r(x) = 1 + x2 + x4 +
x6 + x10 + x13 + x14.

5.6.7 Derive the AES-conditions for e(x) = 1 + x3.
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Convolutional codes

6.1 An example

In this chapter we shall turn our attention away from block codes. Instead, we shall
discuss convolutional codes, which were already mentioned in Definition 1.3.3.

In several important applications, convolutional codes have taken over the role that
block codes played before. An important reason for this is, that soft decision decoding
has more or less the same complexity as hard decision decoding for convolutional codes
and that significant gains in performance can be obtained in this way.

We start with a simple example, see Figure 6.1.

Starting with the length-3 register filled with zeroes, an infinite binary information string
{ai}i≥0 is fed into the encoder one bit at a time. The encoder will produce two output

bits c
(1)
i and c

(2)
i per input bit ai, but these will not only depend on ai but also on ai−1

⊕

⊕

>

>

>

ai ai−1 ai−2

�
�

��7

S
S

SSo

S
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�
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��/?

a(x) =
∑

i≥0 aix
i

c(2)(x) =
∑

i≥0 c
(2)
i xi

c(1)(x) =
∑

i≥0 c
(1)
i xi

Figure 6.1: A rate 1/2 convolutional encoder.
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and ai−2, so indeed the encoder has some memory.

The defining relations for c
(1)
i and c

(2)
i are

c
(1)
i = ai + ai−2, (6.1)

c
(2)
i = ai + ai−1 + ai−2. (6.2)

The two output sequences {c(j)i }i≥0, j = 1, 2, are interleaved and sent over the chan-
nel. Upon reception, the received sequence is de-interleaved into the two sequences
{c(j)i }i≥0, j = 1, 2, from which (if no errors occurred) {ai}i≥0 can be easily obtained by

(c
(1)
i + c

(1)
i−1) + c

(2)
i−1 = ai, i ≥ 0. (6.3)

How to decode errors in a received sequence will be the topic of Section 6.3.

To explain why these codes are called convolutional codes, we rewrite (6.1) as the con-
volutions

c(1)(x) = (1 + x2)a(x), (6.4)

c(2)(x) = (1 + x+ x2)a(x), (6.5)

where the sequences {ai}i≥0 and {c(j)i }i≥0, j = 1, 2, are now represented by the power

series a(x) =
∑

i≥0 aix
i and c(j)(x) =

∑
i≥0 c

(j)
i xi, j = 1, 2.

Note that (6.3) can be written as

(1 + x)c(1)(x) + xc(2)(x) = a(x). (6.6)

Equations (6.4) and (6.5) in turn can be written in matrix form

a(x)
(

1 + x+ x2 1 + x2
)

= (c(1)(x), c(2)(x)).

The code in Figure 6.1 is an example of a rate 1/2 convolutional code because each
information symbol is mapped into two output symbols. In the next section we shall
discuss rate k/n convolutional codes in general. Also we shall define a distance metric
on the set of outputsequences in order to measure the error-correcting capabilities of
convolutional codes.

6.2 (n, k)-convolutional codes

Let GF (2)[x] denote the set of power series in x over GF (2).
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Figure 6.2: A (3, 2)-convolutional code of constraint length 2

Definition 6.2.1 An (n, k)-convolutional code with constraint length M is any code C
in (GF (2)[x])n with n ≥ k defined by

{(a(1)(x), . . . , a(k)(x))G | a(i)(x) in GF (2)[x], 1 ≤ i ≤ k}, (6.7)

where G is a k × n matrix, called generator matrix, with as entries binary polynomials
in x of which the highest degree is M.

The interleaved sequences (c(1)(x), c(2)(x), . . . , c(n)(x)) in C will again be called code-
words.

In the literature one may see various other definitions of the constraint length of an
encoder.

It follows from the above definition that a convolutional code is a linear code. Since k
information bits are mapped into n output bits, one says that an (n, k)-convolutional
code has rate k/n. In Figure 6.2 a (3, 2)-convolutional code is depicted with

G =

(
1 + x 1 0

0 1 + x 1 + x+ x2

)
.

Note that the output (c
(1)
i , c

(2)
i , . . . , c

(n)
i ) at any time i depends on the current and last

M inputs (a
(1)
j , a

(2)
j , . . . , a

(k)
j ), j = i, i − 1, . . . , i −M. The last M inputs together form

the state of the encoder (at moment i).

An (n, k)-convolutional code with generator matrix G is called invertible if a polynomial
matrix H exists such that GHT = Ik. It follows from (6.6) that the (2,1)-convolutional
code of Figure 6.1 is invertible with

H =
(
x 1 + x

)
.
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To determine in general if a convolutional code is invertible, we need to develop some
theory.

Theorem 6.2.2 Consider an (n, k)-convolutional code with generator matrix G. Let
γi, 1 ≤ i ≤ k, denote the gcd of all the i × i subdeterminants of G. Set γ0 = 1 and
let δi = γi/γi−1, 1 ≤ i ≤ k. Then

G = A∆B, (6.8)

where A is a k × k polynomial matrix with determinant 1, B is an n × n polynomial
matrix with determinant 1, and ∆ is a k×n matrix with ∆ii = δi and ∆ij = 0 otherwise.

The values δi, 1 ≤ i ≤ k, are called the invariant factors of the encoder G.

Proof: All the row and column operations in this proof will be elementary operations,
i.e. simple row or column permutations or adding a multiple of one row (column) to
another row (column). So all these operations can be represented by a multiplication
on the left with an invertible matrix or a multiplication on the right with an invertible
matrix.

Using Euclid’s Algorithm one can transform G by elementary row operations into:

G′ =


g11 g12 · · · g1n

0 g22 · · · g2n
...

...
...

0 gk2 · · · gkn

 . (6.9)

If g11 does not divide the other elements in the first row, one can use the same technique
applied to the columns of G′ to obtain a matrix of the form

G′′ =


g11 0 · · · 0
g21 g22 · · · g2n
...

...
...

gkn gk2 · · · gkn

 , (6.10)

with g11 of lower degree (it even divides the previous g11). Again, if g11 does not divide
the other elements in the first column, one can use elementary row operations to get a
matrix of the form (6.9) with g11 of lower degree. Etc. This process stops with a matrix
of the form (6.9) with g11 dividing all the other entries in the first row or with a matrix
of the form (6.10) with g11 dividing all the other entries in the first column.

With elementary row or column operations we may simplify the generator matrix further
to the the form:

G′′′ =

(
g11

G1

)
=


g11 0 · · · 0
0 g22 · · · g2n
...

...
...

0 gk2 · · · gkn

 . (6.11)
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If one of the elements gij with i > 1 and j > 1 is not divisible by g11, we can add
row i to the top row. With elementary row and column operations one again arrives at
a matrix of the form (6.11) but with g11 of lower degree. Repeating this process, one
arrives at a generator matrix of the form (6.11) that has the property that g11 divides
all the elements in G1. Clearly g11 = δ1.

Similarly, G1 can be transformed into the form(
δ2

G2

)
,

with δ1|δ2 and all elements in G2 divisible by δ2. Repeating this process yields the form
in (6.8).

From the form (6.8) and the property δ1|δ2| · · · |δk, if follows that the gcd γi of all i × i
subdeterminants of ∆ is equal to δ1δ2 · · · δi. Since the matrices A and B in (6.8) are
products of elementary row resp. column operations, the same holds for subdeterminants
of G. So δi = γi/γi−1.

2

Since the matrices A and B in (6.8) are invertible, it follows from Theorem 6.2.2 that G
is invertible if and only if ∆ has a polynomial right inverse. This proves the following
corollary.

Corollary 6.2.3 The generator matrix of a convolutional code is invertible if and only
if all its invariant factors are equal to 1.

Write δk = xu(1+xv(x)) and assume that v(x) 6= 0. Then the input (0, 0, . . . , 1
1+xv(x)

)A−1

will result in xu times the k-th row of B as output. This means that this input of infinite
weight results in an output of finite weight (all terms in B are polynomials). This also
means that a finite set of errors during the transmission can result in the decoding to an
input that differs from the real input at infinitely many places. Such an encoder is called
catastrophic. Clearly, one does not want to use catastrophic convolutional encoders.

On the other hand, assume that γk = xu. Note that if (c(1)(x), c(2)(x), . . . , c(n)(x)) has
finitely many non-zero terms, then so does B−1(c(1)(x), c(2)(x), . . . , c(n)(x)). For the
same reason (a(1)(x), a(2)(x), . . . , a(k)(x))A cannot have finitely many non-zero terms,
if (a(1)(x), a(2)(x), . . . , a(k)(x)) has infinitely many non-zero terms (A−1 has polynomials
as entries). But γk = xu implies that all γi’s (and consequently all δi’s) are powers of
x. Thus (a(1)(x), a(2)(x), . . . , a(k)(x))A has infinitely many non-zero terms implies that
B−1(c(1)(x), c(2)(x), . . . , c(n)(x)) cannot have finitely many non-zero terms. It follows
that the encoder cannot be catastrophic in this case.

The discussion above proves the following theorem.

Theorem 6.2.4 The encoder of an (n, k)-convolutional code with invariant factors
γ1|γ2| · · · |γk is catastrophic if and only if γk is not a power of x.
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Figure 6.3: The trellis for the (2, 1)-convolutional code.

Let us now take a new look at the encoder process. A way of describing it, that is
different from the polynomial multiplication in Definition 6.2.1, is by means of a trellis,
which is a graphical way of depicting the possible transitions from one state to another
at succesive moments. Instead of giving a formal description, we shall discuss a typical
example.

In Figure 6.3 one can find the trellis diagram of the (2, 1)-convolutional code of Figure
6.1 for the times 0 up to 7. It is assumed that the initial state is the all zero state (0, 0).

If input a0 is 0, the output of the encoder will be 0,0 and the next state of the encoder
will again be (0, 0). If input a0 is 1, the output will be 1,1 and the next state will be
(1, 0). Etc.

In the diagram solid lines represent the state transitions corresponding to a 0-input,
while the dotted lines represent state transitions corresponding to a 1-input. Next to
these lines the output corresponding to that transition is given. Any path through this
trellis diagram represents the genesis of a codeword.

The reader can easily check, for instance, that the input sequence 1, 0, 1, 1, 1, 0, 0
will result in the output sequence 11, 10, 00, 01, 10, 01, 11 and will end in state
(0, 0).

For error correction one of course needs distinct output sequences to have sufficient
distance.

Analogously to the Hamming distance, the free distance d(u,v) between two words
u = u(x) = (u(1)(x), u(2)(x), . . . , u(n)(x)) and v = v(x) = (v(1)(x), v(2)(x), . . . , v(n)(x)) is
defined by

d(u,v) = |{(i, j) | u(i)
j 6= v

(i)
j , 1 ≤ i ≤ n, j ≥ 0}|. (6.12)

The free distance dfree of a convolutional code is the smallest distance between distinct
output sequences. Because of the linearity of the code, dfree is also equal to the minimum
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Figure 6.4: The distance between every edge and the corresponding output.

non-zero weight in the code.

To determine the free distance of a convolutional code, one has to determine the minimum
weight of any path that leaves the zero-state and returns to it.

In the example of Figure 6.3 the free distance is 5. This value is the weight of the output
sequence 11, 10, 11, . . . coming from input sequence 1, 0, 0, . . . .

6.3 The Viterbi-decoding algorithm

For the decoding of a received sequence, the trellis description of the encoder will play
a key role. Again we shall only consider the code of Figures 6.1 and 6.3. To make life
easier, we shall assume that a codeword has been sent, that is the result of 7 information
bits, followed by two zeroes.

Suppose that the received sequence r is

01, 11, 00, 10, 11, 11, 10, 11, 00.

It is given at the top of Figure 6.4.

It turns out not be necessary to compare the received sequence r with all possible length-
9, output sequences starting and ending in (0,0).

We explain this in two steps. In Figure 6.4 each edge e has as weight w(e) the distance
between the corresponding output sequence (its value can be found in Figure 6.3) and
the received sequence. For instance, the transition from state (0,0) at time 1 to state
(0,0) at time 2 has output 00, which is at distance 2 from the received 11 during that
transition.

For the next step we refer the reader to Figure 6.5
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Figure 6.5: The lowest weight path to every state.

Quite clearly, for the states at time 1 and 2, there is a unique path leading to them.
Each other state, say s, has two incoming edges e1 and e2 coming from two states, say
s1 and s2.

If the lowest weight path ending in state si, i = 1, 2, has weight wi then the lowest
weight path ending in s will have weight

min{w1 + w(e1), w2 + w(e2)}. (6.13)

In this way, for all states the weight of the lowest weight path ending there can be
computed recursively in a very simple way. In Figure 6.5, these values can be found.
Also, in each state only one incoming edge, called survivor remains, namely one that
minimizes (6.13). If both edges minimize (6.13), one of them will have to be designated
as survivor.

The path that reaches state (0,0) at time 9 will clearly correspond to the codeword closest
to the received sequence. From Figures 6.3 and 6.5 one gets as most likely codeword:

11, 10, 00, 10, 11, 11, 10, 11, 00.

Of course there is no need to perform steps 1 and 2 consecutively. They can be done
simultaneously: when considering a state s one can compute the weights of the two
incoming edges.

The decoding algorithm above is called the Viterbi decoding algorithm. When executing
it, one needs to be able to reconstruct the lowest weight paths ending in each of the 4
states. The longer one waits, the longer these paths become (their length grows linearly
in time). In general there are 2Mk states. In most practical applications k = 1 and
M ≤ 7.

In our example we assumed that the transmitted codeword would end in the (0,0)-state
at time 9. If that information is not available, one can set a parameter l and decide at
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Figure 6.6: The state diagram of the (2,1)-convolutional encoder.

time i + l what the most likely transition at time i was, i ≥ 0. For instance, l = 5 in
Figure 6.5 would result in the estimates m0 = 1,m1 = 0,m2 = 1, etc.

In Section 1.2 the Gaussian channel was discussed. In this channel the probability
density that a symbol r is received, while the symbol m was transmitted is given by

1√
2πσ

exp−(r−m)2/2σ2
. So its logarithm is proportional to the squared Euclidean distance

|r −m|2 between r and m.

Fortunately, the Viterbi decoding algorithm is equally suitable for soft decision decoding!
Indeed, instead of computing the Hamming distance between a possible transition output
and the received sequence, one has to compute the squared Euclidean distance between
these two. This calculation will affect the complexity of the decoding algorithm by some
constant.

6.4 The fundamental path enumerator

In the previous section we found the free distance of the (2,1)- convolutional encoder
of Figure 6.1 by looking at its trellis. For convolutional encoders with more states, one
would like to have a more analytical method. To this end we need the equivalent of the
weight enumerator of block codes. Again we shall use the (2,1)-convolutional encoder of
Figure 6.1 to demonstrate these ideas.

In Figure 6.6 the four states of the encoder are depicted with their transitions. Along
each edge the triple m, c(1)c(2) denotes the input m and the corresponding output c(1)c(2).

In Figure 6.7 the label m, c(1)c(2) of each edge in the state diagram is replaced by the
label xmyc(1)+c(2)z. So the exponent of x gives the Hamming weight of the input, the
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Figure 6.7: The labeled diagram of the (2,1)-convolutional encoder.

exponent of y gives the Hamming weight of the output and the exponent of z simply
denotes the fact that the edge is a path of length 1.

We now can also give any path of positive length in the state diagram its own label:
simply take the product of the labels of the edges along the path. From the label
lb(P) = xvywzl of a path P , we can conclude that P has length l, that v edges correspond
to a 1-input (and l− v edges correspond to a 0-input) and that the weight of the output
sequence is w. The trivial path of length 0 has label 1.

Definition 6.4.1 A fundamental path in the state diagram of a convolutional encoder
is any path of positive length that starts in a state s and ends in state 0 without passing
through 0 in between.

To count these fundamental paths we need to define a generating function of these (and
similar) paths.

Definition 6.4.2 The fundamental path enumerator As(x, y, z) with respect to state s
of a convolutional encoder is defined by

As(x, y, z) =
∑

fundamental P from s to 0
lb(P). (6.14)

Instead of A0(x, y, z) one simply writes A(x, y, z).

The (2,1)-convolutional encoder has the four fundamental path enumerators: A00(x, y, z),
A01(x, y, z), A11(x, y, z) and A10(x, y, z). These four are strongly related!

Indeed, any fundamental path from 10 to 00 either

1. follows the edge with label yz, arrives in 01 and continues from there to 0 along
any of the fundamental paths denoted by A01(x, y, z) or
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2. follows the edge with label xyz, arrives in 11 and continues from there to 0 along
any of the fundamental paths denoted by A11(x, y, z).

So we have the relation

A10(x, y, z) = yzA01(x, y, z) + xyzA11(x, y, z).

In the same way, one can find the relations

A00(x, y, z) = xy2zA10(x, y, z),

A01(x, y, z) = y2z + xzA10(x, y, z),

A11(x, y, z) = yzA01(x, y, z) + xyzA11(x, y, z).

This gives rise to the following matrix equation:


1 0 −xy2z 0
0 1 −xz 0
0 −yz 1 −xyz
0 −yz 0 1− xyz



A00(x, y, z)
A01(x, y, z)
A10(x, y, z)
A11(x, y, z)

 =


0
y2z
0
0

 .
(6.15)

From equation (6.15) it is now simple to determine A0,0(x, y, z) (use Kramer’s Rule).

A0,0(x, y, z) =

∣∣∣∣∣∣∣∣∣
0 0 −xy2z 0
y2z 1 −xz 0
0 −yz 1 −xyz
0 −yz 0 1− xyz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 0 −xy2z 0
0 1 −xz 0
0 −yz 1 −xyz
0 −yz 0 1− xyz

∣∣∣∣∣∣∣∣∣

,

and thus

A0,0(x, y, z) =
xy5z3

1− xyz − xyz2
=

xy5z3

1− xyz(1 + z)
. (6.16)

From xy5z3

1−xyz(1+z)
= xy5z3{1 + xyz(1 + z) + (xyz(1 + z))2 + · · · } it follows that the

fundamental path with lowest output weight (i.e. with the smallest exponent of y) has
weight 5. In other words the free distance of this convolutional encoder is 5.

It also follows that there is only one fundamental path with output weight 5, since there
is only one term with y5, namely xy5z3, and its coefficient is 1. The exponent 1 of x
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and the exponent 3 of z in xy5z3 tell that this fundamental path is caused by a single
1-input and that it has length 3 (so there were two 0-inputs).

Just like the weight enumerator of a cyclic code can be used to estimate the probablity
of incorrect decoding (see the end of Section 2.3), the fundamental path enumerator
A(x, y, z) turns out to be very helpful when studying various error probabilities that
one may want to evaluate. Here, we shall only give an upper bound on the so-called
first error probability i.e. the probability that the decoder makes an error right at the
beginning. By the linearity, this means that we are calculating the probability that
starting in the zero state, only zeroes inputs have occurred, while the decoder finds one
of the fundamental paths more likely.

Let Pre(P ; 0) denote the probability that fundamental path P is a more likely transmit-
ted sequence, while in fact the all-zero sequence was transmitted.

The first error probablity Pr1 is bounded above by∑
fundamental P

from 0

Pre(P ; 0). (6.17)

For the BSC with error probability p, the probability Pre(P ; 0) only depends on the
Hamming weight w of the output sequence corresponding to P :

Pre(P ; 0) =
∑

k≥dw/2e

(
w

k

)
pk(1− p)w−k.

From ∑
k≥dw/2e

(
w

k

)
pk(1− p)w−k ≤ pw/2(1− p)w/2

∑
k≥dw/2e

(
w

k

)
≤

≤ pw/2(1− p)w/22w =

=
(
2
√
p(1− p)

)w

it follows that

Pr1 ≤
∑

fundamental
P from 0

(2
√
p(1− p))w(P) = A(1, 2

√
p(1− p), 1).

This proves the following theorem.

Theorem 6.4.3 The first error probablity Pr1 of a convolutional encoder with funda-
mental path enumerator A(x, y, z) satisfies

Pr1 ≤ A(1, 2
√
p(1− p), 1). (6.18)
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Figure 6.8: The mathematical channel.

The first error probablity of the (2,1)-convolutional encoder of Figure 6.1 is thus bounded
above by

32(p(1− p))2.5

1− 4
√
p(1− p)

.

6.5 Combined coding and modulation

In Figure 1.2 a general communication system was depicted. The physical channel
in Figure 1.2 is defined (see Definition 1.2.1) in a mathematical way by means of its
transition probabilities. This description may be fine for most purposes, but is not
always the full story.

In some applications, the mathematical channel consists of three components; see Figure
6.8.

The modulator transforms the input sequence x (coming from the encoder) into a se-
quence of waveforms si. The channel adds noise ni to these waveforms. The demodulator
transforms the sequence r of outputs of the channel back into a sequence y that will go
to the decoder.

In the so-called bandpass Gaussian channel the waveforms sph(t) that are physically
transmitted over the channel at discrete time-intervals have the form

sph(t) = A(t) cos(2πf0t+ φ(t)),

where f0 is a (fixed) carrier frequency and where the amplitude A(t) and phase φ(t) can
be varied.

With sR(t) = A(t) cosφ(t) and sI(t) = A(t) sinφ(t) one can write sph(t) =
sR(t) cos(2πf0t) − sI(t) sin(2πf0t) and thus sph(t) can be represented as the real part
of the point in the complex plane:

sph(t) = Re{s(t)e2πif0t}, (6.19)

where s(t) = sR(t) + isI(t).

The complex representations of the waveforms are normally taken from a specific mod-
ulation set, called constellation. In the sequel M will denote the cardinality of this
constellation.
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Figure 6.9: Some constellations.

The further these constellation points are apart (in the complex plane) the more likely it
is that a received signal will be correctly demodulated. On the other hand, the energy it
takes to transmit a signal s(t) is proportional to |s(t)|2. For this reason the constellation
points are confined to a limited area around 0.

Typical constellations are depicted in Figure 6.9.

A received signal can also be represented by a complex point. The probability that signal
r is received while s has been sent, is again given by the Gaussian distribution:

Pr(r|s) =
1√
2πσ

exp−|r−s|2/2σ2

,

so the logarithm of this probability is proportional to the squared Euclidean distance
|r − s|2 between r and s.

For a sequence r of received symbols, one has to find the most likely transmitted sequence
m of transmitted symbols from the constellation, i.e. one has to maximize

∏
i Pr(ri|si)

or, equivalently, minimize the squared Euclidean distance
∑

i |ri − si|2.

Now, the reason that we did not bother to discuss the modulation and demodulation
aspects of the channel in all the previous sections simply is that the modulation was done
in a straightforward way. For instance, with M = 8 in constellation e) in Figure 6.9 one
takes 3 bits (coming from the encoder) at a time to determine which one of the 23 = 8
constellation points was transmitted. Assuming that these 8 points have coordinates ±1

2

and ±3
2
, the minimum squared Euclidean distance between two of these points is 2 (for
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Figure 6.10: Partitioning constellation h) in four subconstellations
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Figure 6.11: Choice of the subconstellation

instance (1
2
, 3

2
) and (3

2
, 1

2
) have squared Euclidean distance 12 + 12 = 2).

Since about ten years, we know that coding can improve the performance of the modu-
lation scheme. We shall demonstrate this technique with a typical example.

We know already that constellation e) in Figure 6.9 allows one to transmit 3 bits per
signal point and also that these points have squared Euclidean distance at least two.
However, we are going to allow the 16 points of constellation h) to be transmitted, but
we still want to transmit three bits per point.

A way to do this is as follows. The 16 points of constellation h) are partitioned into four
subconstellations, each of size 4, in the way depicted in Figure 6.10.

Now, one of the three input bits is fed into a (2,1)-convolutional encoder, say the one
of Figure 6.1. The output of the encoder determines a specific subconstellation in a
suitably chosen one-to-one way, say by the rule, depicted in Figure 6.11:

The other two input bits determine which of the four points in the chosen subconstellation
will actually be transmitted.

Two different points in the same subconstellation have squared Euclidean distance at
least four, instead of just two. Two points from different subconstellations can have a
squared Euclidean distance of just one. However the (2,1) convolutional encoder will
take care that for at least three transmissions the constellation points will be chosen
from different subconstellations. The resulting squared Euclidean distance turns out to
be even more than the 3× 1 that we have now obtained.

Indeed, by the linearity of the convolutional code we may assume that one sequence
of input bits of the (2,1) convolutional encoder consists of just zeroes, resulting in 00-
outputs only, corresponding to points of the a-type subconstellation. The other input
sequence will be one of the following two possibilities:
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i) There is a single 1-input (all others are 0) in the second sequence. In this case the
output sequence of the (2,1) convolutional encoder looks like:

· · · , 00, 00, 11, 10, 11, 00, 00, · · · ,

corresponding to the sequence of subconstellations

· · · , a , a , d , c , d , a , a , · · · .

So, in this case the squared Euclidean distance between the two sequences of constellation
points is at least 2 + 1 + 2 = 5.

ii) There are more than one 1-inputs. The output sequence of the (2,1) convolutional
encoder will differ in at least four steps from the output sequence coming from the all-
zero input sequence. So, during at least four consecutive transmissions, points will be
chosen from different constellations, resulting in a squared Euclidean distance of at least
4.

Taking the minimum of all possibilities, we conclude that this specific combined coding
and modulation scheme has increased the minimum squared Euclidean distance from 2
to 4. In practical situations this already gives rise to a considerable increase in reliability.

6.6 Problems

6.6.1 Decode the received sequence

11, 11, 00, 11, 10, 01, 00, 11, 10

in Figure 6.3, if the transmitted codeword can be assumed to be the result of 7
information symbols followed by 2 zeroes.

6.6.2 Determine the invariant factors of the (5,3)-convolutional code with generator
matrix

G =

 1 1 + x 1 + x2 1 1 + x+ x2

1 + x 1 + x x+ x3 0 x+ x3

x x+ x2 1 + x+ x2 + x3 x 1 + x+ x3

 .
6.6.3 Let C be the (2,1)-convolutional code generated by

G =
(

1 + x 1 + x2
)
.

Give an input sequence with infinitely many non-zero elements resulting in an
output with finitely many non-zero elements.

Determine the path enumerator of this code.
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6.6.4 Make the trellis for the (2,1)-convolutional code C generated by

G =
(

1 + x+ x3 1 + x+ x2 + x3
)
.

What is the free distance of C?

6.6.5 Assume that the points in Figure 6.10 have coordinates ±1
2

and ±3
2

and let the
four points x1, x2, x3, x4 in each of the four subconstellations

x3

x1

x4

x2

be the image of two of the three information bits in the following way:

00 → x1

01 → x2

11 → x3

10 → x4

.

The choice of the particular subconstellation is made according to the rule in
Figure 6.11 by the output of the convolutional code of Figure 6.1, which has the
third information bit as input.

Decode the received sequence

· · · , a1, a1, d2, c3, d4, a1, a1, · · · .
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Appendix A

Finite fields

All readers are assumed to be familiar with Q, R, and C, the sets of rational, real
and complex numbers. These sets have nice properties with respect to addition and
multiplication, properties that will be extensively discussed in this appendix. These
three sets are examples of so-called fields.

In the context of coding theory fields of finite cardinality play a crucial role. This is so
because most codes consist of vectors taken from a vector space over a finite field and,
secondly, many good codes are constructed by algebraic methods. In this appendix an
introduction will be given to the theory of finite fields. All possible results regarding
finite fields that are needed in the chapters can be found in this appendix.

A.1 The integers

Let N denote the set of natural numbers and Z the set of integers. If an integer d divides
an integer n, i.e. n = k · d for some k ∈ Z, this will be denoted by d | n. If d does not
divide n one writes d|/n.

An integer p, p > 1, is said to be prime, if it has no other positive divisors than 1 and
p. It is already known since Euclid (300 B.C.) that there exist infinitely many prime
numbers. With p1 = 2, p2 = 3, p3 = 5, etc., a natural numbering of the primes is given.

Definition A.1.1 The greatest common divisor of two integers a and b, denoted by
gcd(a, b) or (a, b), is the, uniquely determined, greatest positive integer dividing both a
and b, so

gcd(a, b) = max{d > 0 | (d | a) ∧ (d | b)}. (A.1)

Similarly the least common multiple of two integers a and b, denoted by lcm[a, b] or [a, b],
is the, uniquely determined, least positive integer divisible by both a and b, so

lcm[a, b] = min{m > 0 | (a | m) ∧ (b | m)}. (A.2)
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The next theorem follows directly from an algorithm that will be presented below.

Theorem A.1.2 Let a and b be in N . Then there exist integers u and v such that

ua+ vb = gcd(a, b). (A.3)

Let a and b be two positive integers with b ≥ a. Clearly any divisor of a and b is a divisor
of a and b− a and vice versa. It follows that gcd(a, b) = gcd(a, b− a) and for the same
reason that gcd(a, b) = gcd(r, a), where r is defined by usual “division with remainder”,
i.e. b = q · a+ r, 0 ≤ r < a. If r = 0, one may conclude that gcd(a, b) = a, while if r > 0
one can continue in exactly the same way with a and r. This method gives an extremely
fast way of computing the gcd of a and b. The next algorithm shows how to find u and
v satisfying (A.3) in an efficient way.

Algorithm A.1.3 (Euclid’s algorithm)

(initialize) s0 = b; s1 = a;

u0 = 0; u1 = 1;

v0 = 1; v1 = 0;

n = 1;

while sn > 0 do

begin n = n+ 1; qn = bsn−2/sn−1c;

sn = sn−2 − qnsn−1;

(so sn is the remainder of sn−2 divided by sn−1)

un = qnun−1 + un−2;

vn = qnvn−1 + vn−2

end;

u = (−1)nun−1; v = (−1)n−1vn−1; (A.4)

gcd(a, b) = sn−1. (A.5)

Proof: Since the numbers sn, n ≥ 1, form a strictly decreasing sequence of nonnegative
integers, the algorithm will terminate after at most b iterations (in fact it will terminate
much faster; see Problems A.6.1 and A.6.2).

From the relation sn = sn−2 − qnsn−1 in the algorithm and the argument given below
Theorem A.1.2 it follows that

gcd(a, b) = gcd(s0, s1) = gcd(s1, s2) = · · · =
= gcd(sn−1, sn) = gcd(sn−1, 0) = sn−1.
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This proves (A.5). Next we want to prove that for all k, 0 ≤ k ≤ n,

(−1)k−1uka+ (−1)kvkb = sk. (A.6)

For k = 0 and k = 1 (A.6) is true by the initialization values of u0, u1, v0, and v1. We
proceed by induction. It follows from the relations given in the algorithm and from the
induction hypothesis that

sk = sk−2 − qksk−1 =

{(−1)k−3uk−2a+ (−1)k−2vk−2b} − qk{(−1)k−2uk−1a+ (−1)k−1vk−1b} =

= (−1)k−1{uk−2 + qkuk−1}a+ (−1)k{vk−2 + qkvk−1}b =

= (−1)k−1uka+ (−1)kvkb.

This proves (A.6) for all k, 0 ≤ k ≤ n. Substitution of k = n− 1 in (A.6) yields

(−1)nun−1a+ (−1)n−1vn−1b = sn−1. (A.7)

Comparison of (A.7) with (A.3) proves the identities in (A.4).

2

Theorem A.1.2 makes it possible to prove elementary properties of numbers.

Corollary A.1.4 Let a, b, and d be integers such that d divides ab. Then gcd(d, a) = 1
implies that d | b.

Proof: Theorem A.1.2 applied to a and d shows the existence of integers u and v such
that 1 = ua + vd. Multiplication of this relation by b yields b = u(ab) + (vb)d. Since d
divides both ab and d, it follows that d also divides u(ab) + (vb)d, i.e. b.

2

It is now quite easy to prove (see Problem A.6.3) the following theorem.

Theorem A.1.5 (Fundamental Theorem of Number Theory)
Any positive integer has a unique factorization of the form∏

i
pei

i , ei ∈ N . (A.8)

Let a =
∏

i p
ei
i , ei ∈ N , and b =

∏
i p

fi
i , fi ∈ N . Then

gcd(a, b) =
∏

i
p

min{ei,fi}
i , (A.9)

lcm[a, b] =
∏

i
p

max{ei,fi}
i , (A.10)

gcd(a, b) · lcm[a, b] = ab. (A.11)
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A special function on N that will be needed in Section A.5 will be defined next.

Definition A.1.6 (Euler’s Totient Function) The function φ(m) is defined as the
number of integers less than or equal to m that are coprime with m, so

φ(m) =| {1 ≤ r ≤ m | gcd(r,m) = 1} | . (A.12)

Theorem A.1.7 For all positive integers n∑
d|n
φ(d) = n. (A.13)

Proof: Let d | n. By writing k = id one sees immediately that the number of elements
k, 1 ≤ k ≤ n, with gcd(k, n) = d is equal to the number of integers i with 1 ≤ i ≤ n/d
and gcd(i, n/d) = 1. So this number is φ(n/d). On the other hand, gcd(k, n) divides n
for each integer k, 1 ≤ k ≤ n. It follows that

∑
d|n φ(n/d) =

∑
d|n
∑

1≤k≤n,gcd(k,n)=d 1 =∑
1≤k≤n 1 = n, which is equivalent to (A.13).

2

Let p be a prime number. Since every integer r, 1 ≤ r < p, has gcd 1 with p, it follows
that φ(p) = p − 1. Also φ(pe), p prime, can easily be evaluated. Indeed, since only the
multiples of p have a nontrivial factor in common with pe, one has:

φ(pe) = pe − pe−1 = pe−1(p− 1) = pe(1− 1

p
). (A.14)

If m = pe1
1 p

e2
2 with both p1 and p2 prime and both e1 and e2 positive, one can again

easily evaluate φ(m). In this case m/p1 integers in between 1 and m are a multiple of p1,
m/p2 integers in between 1 and m are a multiple of p2, but m/p1p2 of these integers are
a multiple of both p1 and p2 (namely the multiples of p1p2). It follows that in this case

φ(m) = φ(pe1
1 p

e2
2 ) = m− m

p1

− m

p2

+
m

p1p2

= m(1− 1

p1

)(1− 1

p2

).

Generalizing this (by means of the Principle of Inclusion and Exclusion) one obtains in
this way the following theorem.

Theorem A.1.8

φ(m) = m ·
∏

p prime, p|m
(1− 1

p
). (A.15)

Two integers a and b are said to be congruent to each other modulo m, if their difference
b− a is divisible by m. This so-called congruence relation is denoted by:

a ≡ b (mod m). (A.16)

For instance 25 ≡ 3 (mod 11) since 11|(25− 3). In this terminology one also has 5 + 8 ≡ 2
(mod 11) and 5× 9 ≡ 1 (mod 11).

Lemma A.1.9 Let ka ≡ kb (mod m) and gcd(k,m) = 1. Then a ≡ b (mod m).
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Proof: Since ka− kb = xm, x ∈ Z, and gcd(m, k) = 1, it follows from Corollary A.1.4
that m | (a− b), i.e. a ≡ b (mod m).

2

The simplest congruence, and one that one often has to solve, is the so-called linear
congruence relation:

ax ≡ b (mod m). (A.17)

Theorem A.1.10 The linear congruence relation ax ≡ b (mod m) has a solution x for
every a, 1 ≤ a ≤ m − 1 and every b if and only if m is a prime. If m is a prime, say
m = p, this solution is unique modulo p.

Proof: If m is composite, say m = m1m2 with 1 < m1 < m, the congruence relation
m1x ≡ 1 (mod m) obviously does not have a solution, since both m and xm1 are divisible
by m1, but 1 is not.

If m is a prime p, the sets {0, 1, . . . , p−1} and {0a, 1a, . . . , (p−1)a} are the same modulo
p by Lemma A.1.9. In particular each element b in the first set can be written in a unique
way as a product ax (modulo p) in the second set. It follows that the congruence relation
ax ≡ b (mod p) has a unique solution modulo p.

2

The solution of ax ≡ b (mod p), 1 ≤ a ≤ p − 1, can easily be found with Euclid’s
Algorithm. Indeed, from ua + vp = 1 (see (A.3)), it follows that ua ≡ 1 (mod p). So
the solution x of the congruence relation ax ≡ b (mod p) is given by bu (mod p), since
a(bu) ≡ b(ua) ≡ b (mod p). One often writes a−1 for the unique element u satisfying ua
≡ 1 (mod p).

Example A.1.11 To solve 17x ≡ 16 (mod 37), one first applies Euclid’s Algorithm to
17 and 37. One gets (−13)× 17 + 6× 37 = 1. So 24× 17 ≡ (−13)× 17 ≡ 1 (mod 37).

It follows that 17−1 ≡ 24 (mod 37) and that the solution of 17x ≡
16 (mod 37) is given by x ≡ 17−1 × 16 ≡ 24× 16 ≡ 14 (mod 37).

A.2 Relations

The congruence relation defined in (A.16) is a special case of a concept that will be
defined next.

Definition A.2.1 Let S be any set and let U be a non-empty subset of S × S. Then U
defines a relation ∼ on S by

∀s,t∈S [s ∼ t iff (s, t) ∈ U ]. (A.18)
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An equivalence relation is a relation with the additional properties:

reflexivity: ∀s∈S [s ∼ s] (E1)

symmetry: ∀s,t∈S [(s ∼ t)⇒ (t ∼ s)] (E2)

transitivity: ∀s,t,u∈S [(s ∼ t ∧ t ∼ u)⇒ (s ∼ u)] (E3)

Let S be the set of straight lines in the (Euclidean) plane. Then “being parallel or equal”
defines an equivalence relation. In Section A.1 we have seen another example. There, a
relation (called congruence relation, see (A.16)) was defined on S = Z by a ≡ b (mod m)
iff m | (a− b). The reader can easily check that this congruence relation indeed satisfies
(E1), (E2) and (E3) and thus is an equivalence relation (see also Problem A.6.4).

An equivalence relation ∼ on a set S partitions S into so-called equivalence classes < s >
defined by

< s >= {t ∈ S | t ∼ s}, (A.19)

So < s > consists of those elements in S that are equivalent to s. It is straightforward
to check that for any equivalence class < s > one has

i) ∀t,u∈<s> [t ∼ u],
ii) ∀t∈<s> ∀u∈S\<s> [¬(t ∼ u)].

The equivalence classes of the congruence relation defined in (A.16) are called congruence
classes. The set of congruence classes of the integers modulo m will be denoted by Zm.
Its elements are < 0 >, < 1 >, . . . , < m − 1 > but will often simply be represented by
the numbers 0, 1, . . . ,m− 1.

A.3 Algebra

In this section sets will be discussed with operations defined on them that are similar to
the + and × defined on the reals.

Let S be a nonempty set. Any mapping from S × S into S is called an operation on S.
The image of the pair (s, t) under this operation will, for the moment, be denoted by
s ∗ t. An operation ∗ is called commutative if

∀s,t∈S [s ∗ t = t ∗ s]. (A.20)

An element e in S that satisfies

∀s∈S [s ∗ e = e ∗ s = s], (A.21)

will be called a unit-element of (S, ∗). If (S, ∗) has a unit-element, it is be unique. Indeed,
suppose that e and e′ both satisfy (A.21). Then by (A.21) e = e ∗ e′ = e′.
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Example A.3.1 Consider the operation + (i.e. addition) defined on Z. This operation
is commutative and (Z,+) has 0 as unit-element.

Example A.3.2 Let S be the set of 2× 2 integer matrices. Multiplication of matrices
is not a commutative operation. Consider for instance(

1 1
0 1

)(
0 1
1 0

)
=

(
1 1
1 0

)
6=
(

0 1
1 1

)
=

(
0 1
1 0

)(
1 1
0 1

)
.

This set S does however have a unit-element, namely(
1 0
0 1

)
.

When applying the same operation repeatedly one often does not like the outcome to
depend on the order in which the operations were executed. In other words one does not
want to need brackets in expressions like s ∗ t ∗ u. An operation ∗ is called associative, if

∀s,t,u∈S [s ∗ (t ∗ u) = (s ∗ t) ∗ u]. (A.22)

Example A.3.3 The operation ∧ defined on the positive integers by s ∧ t = st (so ∧
stands for “raising to the power”) is not associative as follows from

(2 ∧ 3) ∧ 2 = (23)2 = 26 6= 29 = 2(32) = 2 ∧ (3 ∧ 2).

Definition A.3.4 Let G be a nonempty set and ∗ an operation defined on G. Then the
pair (G, ∗) is called a group, if

operation ∗ is associative, (G1)

G contains a unit-element, say e, (G2)

∀g∈G ∃h∈G [g ∗ h = h ∗ g = e]. (G3)

The uniqueness of the element h in (G3) can be seen quite easily. Indeed, if h and h′

both satisfy (G3), then h = h ∗ e = h ∗ (g ∗ h′) = (h ∗ g) ∗ h′ = e ∗ h′ = h′. The element
h satisfying (G3) is called the inverse of g, and will be denoted by g−1.

A group (G, ∗) is called commutative, if the operation ∗ is commutative. The reader
easily checks that (Z,+) in Example A.3.1 is a commutative group. Other well-known
examples of commutative groups are for instance (Q,+), (Q \ {0}, ·), (R,+), etc.

Example A.3.2 does not yield a group, because not all matrices have an inverse (e.g. the
all-one matrix).

On the set Zm defined at the end of Section A.2 one can define two operations (called
addition and multiplication) that coincide with the modular arithmetic explained in
(A.16):

< s > + < t >:=< s+ t >, s, t ∈ Z, (A.23)

< s > × < t >:=< st >, s, t ∈ Z. (A.24)

The proof of the next lemma is left as an exercise (Problem A.6.5).
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Lemma A.3.5 The set Zm together with the addition +, as defined in (A.23), is a
commutative group with < 0 > as unit-element.

Lemma A.3.6 The set Z∗
m = Zm \ {< 0 >} together with the multiplication ×, as

defined in (A.24), is a group if and only if m is a prime p. In this case (Z∗
p ,×) is

commutative and has < 1 > as unit-element.

Proof: Clearly (Z∗
m,×) satisfies properties (G1) and (G2). That it satisfies (G3) if and

only if m is a prime is a direct consequence of Theorem A.1.10.

2

If (G, ∗) is a group and G contains a non-empty subset H such that (H, ∗) is also a
group one calls (H, ∗) a subgroup of (G, ∗). Because associativity already holds for the
operation ∗, (H, ∗) will be a subgroup of (G, ∗) iff

the product of any two elements in H also lies in H, (H1)

the unit-element e of (G, ∗) lies in H, (H2)

the inverse of an element of H also lies in H. (H3)

It is left as an exercise (see Problem A.6.6) to check that (H2) and (H3) are equivalent
to

∀g,h∈H [g ∗ h−1 ∈ H]. (H)

Let m ∈ Z \ {0}. Then (mZ,+), where mZ is the set of all integer multiples of m, so
mZ = {mk | k ∈ Z}, is a commutative subgroup of (Z,+), as one can easily check.

We shall now consider the situation where two operations are defined on a set. (The first
will be denoted by g + h, the second by g × h, g · h or just gh.)

Definition A.3.7 The triple (R,+,×) is called a ring, if

(R,+) is a commutative group (R1)

(its unit-element will be denoted by 0),

the operation × is associative, (R2)

distributivity holds, i.e. (R3)

∀r,s,t∈R [r(s+ t) = rs+ rt and (r + s)t = rt+ st].

The (additive) inverse of an element r in the group (R,+) will be denoted by −r, just as
2r denotes r+ r, 3r denotes r+ r+ r, etc. Note that 0 really behaves like a zero-element,
because for every r ∈ R one has that 0r = (r − r)r = r2 − r2 = 0 and similarly that
r0 = 0.

Suppose that the (multiplicative) operation × is commutative on R. Then the ring
(R,+,×) will be called commutative. Examples of commutative rings are (Z,+, ·),
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(Q,+, ·), (R,+, ·) and (Zm,+, ·), m 6= 0. Also mZ, the set of m-tuples, with the same
addition and multiplication as in (Z,+, ·) forms a commutative ring.

Let (R,+,×) be a ring and S ⊂ R, such that (S,+,×) is also a ring. Then (S,+,×)
is called a subring. Clearly (Q,+, ·) is a subring of (R,+, ·). The ring (mZ,+, ·) is a
subring of (Z,+, ·).

Later the following special class of subrings will play an important role.

Definition A.3.8 A subring (I,+,×) of a ring (R,+,×) is called an ideal, if

∀i∈I ∀r∈R [ir ∈ I and ri ∈ I]. (I)

It is easy to check that an integer multiple of a multiple of m, m ∈ Z \ {0}, is also
a multiple of m.. From this observation it follows that (mZ,+, ·) forms an ideal in
(Z,+, ·).

In a ring (R,+,×) the element 0 obviously can not have a multiplicative inverse, unless
R consists of the single element 0. Indeed, suppose that r0 = e, for some r ∈ R. Then
for each x ∈ R one has that x = xe = x(r0) = (xr)0 = 0, i.e. R = {0}.

It is however quite possible that (R∗,×) with R∗ = R \ {0} has the structure of a group.

Definition A.3.9 A triple (F,+,×) is called a field, if

(F,+) is a commutative group (F1)

(its unit-element is denoted by 0),

(F \ {0},×) is a group (F2)

(the multiplicative unit-element is denoted by e),

distributivity holds. (F3)

The multiplicative inverse of an element a in a field will be denoted by a−1.

Examples of fields are the rationals (Q,+,×), the reals (R,+,×) and the complex num-
bers (C,+,×).

Unlike some rings, a field can not have so-called zero-divisors, i.e. elements a and b, both
unequal to 0, whose product ab equals 0. Indeed, suppose that ab = 0 and a 6= 0. Then
b = e× b = (a−1a)b = a−1(ab) = a−10 = 0.

If a subring (K,+,×) of a field (F,+,×) also has the structure of a field, we shall call
(K,+,×) a subfield of (F,+,×).

In the sequel we shall be interested in a so-called finite groups (G, ∗), finite rings (R,+,×)
and finite fields (F,+,×) of order n, meaning that G, resp. R and F are (finite) sets of
cardinality n.

Analogously to rings we define a commutative field (F,+, ·) to be a field, for which the
multiplication is commutative. The following theorem will not be proved.
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Theorem A.3.10 (Wedderburn) Every finite field is commutative.

In this appendix we shall study the structure of finite fields. It will turn out that finite
fields of order q only exist when q is a prime power. Moreover these finite fields are
essentially unique for a given size q. This justifies the widely accepted notation Fq or
GF (q) (where GF stands for Galois Field after the Frenchman Galois) for a finite field
of order q. Examples of finite fields will follow in Section A.4.

Before we conclude this section, some additional properties of finite groups need to be
derived.

Let (G, ·) be a finite multiplicative group with unit-element e and let g be a nonzero
element in G. Let g2, g3, etc., denote g × g, g × g × g, etc. Also, let g0 denote the
unit-element e. Consider the sequence of elements e, g, g2, . . . in G. Since G is finite,
there exists a unique integer n such that the elements e, g, . . . , gn−1 are all different, while
gn = gj for some j, 0 ≤ j < n. It follows that gn+1 = gj+1, etc. If j > 0, it would also
follow that gn−1 = gj−1, contradicting the assumption on n. We conclude that j = 0, i.e.
gn = e. So the elements gi, 0 ≤ i ≤ n− 1, are all distinct and gn = e.

It is now clear that the elements e, g, . . . , gn−1 form a subgroupH inG. Such a (sub)group
H is called a cyclic (sub)group of order n. We say that the element g generates H and
that g has order n.

Lemma A.3.11 Let (G, ·) be a group and g an element in G of order n. Then for all m

gm = e iff n divides m.

Proof: Write m = qn+ r, 0 ≤ r < n. Then gm = e iff gr = e, i.e. iff r = 0, i.e. iff n | m.

2

Lemma A.3.12 Let (G, ·) be a group and g an element in G of order n. Then element
gk, k > 0, has order n/ gcd(k, n).

Proof: Let m be the order of gk. Since k/ gcd(k, n) is integer, it follows that

(gk)n/ gcd(k,n) = (gn)k/ gcd(k,n) = (e)k/ gcd(k,n) = e.

From Lemma A.3.11 we conclude that m divides n/ gcd(k, n). To prove the converse, we
observe that (gk)m = e. Lemma A.3.11 implies that n divides km. Hence n/ gcd(k, n)
divides m.

2

It follows from Definition A.1.6 that exactly φ(n) powers of an element g of order n in
G will have order n.

Corresponding to a subgroup (H, ·) of a finite group (G, ·) an equivalence relation ∼ on
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G can be defined (see Problem A.6.8) by

a ∼ b iff ab−1 ∈ H. (A.25)

The equivalence classes are of the form {ha | h ∈ H}, as one can easily check. They
all have the same cardinality as H. It follows that the number of equivalence classes is
| G | / | H | . As a consequence | H | divides | G | . This proves the following theorem.

Theorem A.3.13 Let (G, ·) be a finite group of order n. Then every subgroup (H, ·) of
(G, ·) has an order dividing n. Also every element g, g 6= e in G has an order dividing n.

A.4 Constructions

Let (R,+,×) be a commutative ring with (multiplicative) unit-element e. Let (S,+,×)
be an ideal in (R,+,×). The relation ≡ on R will be defined by

∀a,b∈R [a ≡ b (mod R) iff a− b ∈ S]. (A.26)

It is a simple exercise to check that (A.26) defines an equivalence relation on R. With
R/S (read: R modulo S) the set of equivalence classes will be denoted. As before < a >
will stand for the class containing a, so < a >= {a+s | s ∈ S}. Based on the operations
in R, one defines in R/S

< a > + < b >:=< a+ b >, a, b ∈ R, (A.27)

< a > × < b >:=< ab >, a, b ∈ R, (A.28)

It is necessary to verify that these definitions are independent of the particular choice
of the elements a and b in the equivalence classes < a > resp. < b > . Again it is very
elementary to check the following theorem.

Theorem A.4.1 Let (R,+,×) be a commutative ring with unit-element e and let
(S,+,×) be an ideal in (R,+,×). With the above definitions (R/S,+,×) is a com-
mutative ring with unit-element < e > .

The ring (R/S,+,×), defined above, is called a residue class ring. It is instrumental in
constructing finite fields.

Since (mZ,+, ·) is an ideal in the commutative ring (Z,+, ·), one can with Theorem A.4.1
also describe the ring (Zm,+, ·) as the residue class ring (Z/mZ,+, ·). This residue class
ring is commutative and has < 1 > as multiplicative unit-element.

Theorem A.4.2 Let m be a positive integer. The ring (Zm,+, ·) is a finite field with
m elements if and only if m is prime.
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Proof: By Lemma A.3.5 the commutative ring (Zm,+, ·) (with m elements) satisfies
property (F1). Also (F3) holds trivially.

The statement now follows directly from Lemma A.3.6. 2

In the next section it will be shown that for p prime, (Zp,+, ·) is essentially the only
field with p elements.

Our next goal is to to construct finite fields of size q, where q = pm, p prime.

Let (F,+, ·) be a commutative field (not necessarily finite). Then F [x] denotes the set
of polynomials over F, i.e. the set of expressions

f(x) =
∑n

i=0
fix

i = f0 + f1x+ · · ·+ fnx
n, (A.29)

for some n in N , where the fi, 0 ≤ i ≤ n, lie in F and are called the coefficients of f(x).
Unless f0 = f1 = . . . = fn = 0 one can assume without loss of generality that fn 6= 0.
This integer n is called the degree of f(x).

Addition and multiplication of polynomials is defined in the obvious way.∑n

i=0
fix

i +
∑n

i=0
gix

i =
∑n

i=0
(fi + gi)x

i. (A.30)

(∑m

i=0
fix

i
) (∑n

j=0
gjx

j
)

=
∑m+n

k=0

(∑
i+j=k

figj

)
xk. (A.31)

It is now straightforward to verify the next theorem.

Theorem A.4.3 Let (F,+, ·) be a commutative field. Then (F [x],+, ·) is a commutative
ring with unit-element.

What will be done now for F [x] will be completely analogous to what has been done for
Z in the previous sections. For that reason, not all arguments will be repeated.

So, in F [x] the following notions can be defined: divisibility, reducibility (if a polynomial
can be written as the product of two polynomials of lower degree), irreducibility (which
is the analog of primality), the greatest common divisor gcd, the least common multiple
lcm, a unique factorization theorem (the analog of Theorem A.1.5), Euclid’s Algorithm,
congruence relations, etc. Note that the gcd and lcm are now uniquely determined up
to a multiplication by a constant.

In particular we have the following theorem and corollary (see also (A.3) and Theorem
A.1.10).

Theorem A.4.4 Let a(x) and b(x) be polynomials in F [x]. Then there exist polynomials
u(x) and v(x) in F [x], such that

u(x)a(x) + v(x)b(x) = gcd(a(x), b(x)). (A.32)
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Corollary A.4.5 Let a(x) and f(x) be polynomials in F [x] such that a(x) 6≡ 0
(mod f(x)). The linear congruence relation a(x)u(x) ≡ b(x) (mod f(x)) has a solu-
tion u(x) for every a(x), a(x) 6≡ 0 (mod f(x)), and every b(x) if and only if f(x) is
irreducible.

If f(x) is irreducible, this solution is unique modulo f(x). It will be denoted by
(a(x))−1b(x).

Let s(x) ∈ F [x]. It is easy to check that the set {a(x)s(x) | a(x) ∈ F [x]} forms an ideal
in the ring (F [x],+, ·). We denote this ideal by (s(x)) and say that s(x) generates the
ideal (s(x)).

Conversely, let (S,+, ·) be any ideal in (F [x],+, ·), S 6= F [x]. Let s(x) be a polynomial of
lowest degree in S. Take any other polynomial f(x) in S and write f(x) = q(x)s(x)+r(x),
degree(r(x)) < degree(s(x)). With properties (I) and (R1), we then have that also r(x)
is an element of S. From our assumption on s(x) we conclude that r(x) = 0 and thus
that s(x) | f(x).

It follows from the above discussion that any ideal in the ring (F [x],+, ·) can be generated
by a single element! A ring with this property is called a principal ideal ring.

From now on we shall restrict ourselves to finite fields.

Let f(x) ∈ Fp[x] of degree n. We shall say that f is a p-ary polynomial. Let (f(x)) be
the ideal generated by f(x). By Theorem A.4.3 we know that (Fp[x]/(f(x)),+, ·) is a
commutative ring with unit-element < 1 >. It contains pn elements.

Theorem A.4.6 Let (Fp,+, ·) be a finite field with p elements. Let f(x) be a polynomial
of degree n over Fp. Then the commutative ring (Fp[x]/(f(x)),+, ·) with pn elements is
a (finite) field if and only if f(x) is irreducible over Fp.

Proof: The proof is analogous to that of Theorem A.4.2 and follows directly from
Corollary A.4.5.

2

Example A.4.7 Let q = 2. The field F2 consists of the elements 0 and 1. Let f(x) =
1 + x3 + x4. Then f(x) does not have 0 or 1 as zeroes, so f(x) does not contain a linear
factor. Also f(x) is not divisible by x2 + x + 1, the only irreducible, binary polynomial
of degree 2. We conclude that f(x) is irreducible and that (F2[x]/(f(x)),+, ·) is a finite
field with 24 = 16 elements. These sixteen elements can be represented by the sixteen
binary polynomials of degree less than 4. The addition and multiplication, as defined by
(A.30) and (A.31), have to be performed modulo x4 + x3 + 1. For instance

(1 + x+ x3)(1 + x2) ≡ 1 + x+ x2 + x5 ≡
≡ (x+ 1)(x4 + x3 + 1) + x2 + x3 ≡
≡ x2 + x3 (mod x3 + x+ 1).
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Two questions that arise naturally at this moment are:

1. Does Theorem A.4.6 yield finite fields of size pn for all primes p and integers n? In
other words: does an irreducible, p-ary polynomial f(x) of degree n exist for every
prime number p and every n?

2. Do other finite fields exist?

The second question gets a negative answer in the next section. For the first question
we shall state without proof an affirmative answer in the form of an explicit formula for
the number of irreducible p-ary polynomials of degree n.

Let a be a nonzero element in Fq (at this moment we only know finite fields of size p
with p prime). Clearly if f(x) is irreducible over Fq then so is af(x). Also the ideals
in Fq[x] generated by f(x) and by af(x) are the same. So, in view of Theorem A.4.6
we shall only be interested in so-called monic polynomials of degree n, i.e. polynomials,
whose leading coefficient (the coefficient of xn) is equal to 1.

Before we can give an explicit expression for the number of monic, q-ary polynomials of
degree n, we need to derive some more tools.

Definition A.4.8 Let n =
∏k

i=1 p
ei
i , where the pi’s are different primes and the ei’s

positive, 1 ≤ i ≤ k. Then the Möbius function µ(n) is defined by

µ(n) =


1, if n = 1,
0, if ei ≥ 2 for some i, 1 ≤ i ≤ k,

(−1)k, if e1 = e2 = · · · = ek = 1.

In particular, µ(1) = 1, µ(p) = −1 and µ(pi) = 0, i ≥ 2, for any prime p.

The Möbius function is defined in this way to satisfy the following property.

Theorem A.4.9 Let n be a positive integer. Then∑
d|n
µ(d) =

{
1, if n = 1,
0, if n > 1.

(A.33)

Proof: For n = 1 the assertion is trivial. For n > 1 we write, as above, n =
∏k

i=1 p
ei
i ,

ei > 0, 1 ≤ i ≤ k. Then k > 0 and thus

∑
d|n
µ(d) =

∑
d|p1p2···pk

µ(d) =

= 1 +
∑k

l=1

∑
1≤i1<i2<···<il≤k

µ(pi1pi2 · · · pil) =

∑k

l=0

(
k
l

)
(−1)l = (1− 1)k = 0.

2
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Theorem A.4.10 Let m and n be two positive integers such that m | n. Then

∑
d, m|d|n

µ(n/d) =

{
1, if m = n,
0, otherwise.

(A.34)

Proof: Let n = n′m. For each d, m | d | n, write d = d′m. Then
∑

d, m|d|n µ(n/d) =∑
d′,d′|n′ µ(n′/d′), which by (A.33) is 1 for n′ = 1, (i.e. m = n), and 0 for n′ > 1.

2

Theorem A.4.11 (Möbius Inversion Formula) Let f be a function defined on N
and let g be defined on N by

g(n) =
∑

d|n
f(d), n ∈ N . (A.35)

Then for all n ∈ N

f(n) =
∑

d|n
µ(d)g(n/d) =

∑
d|n
µ(n/d)g(d). (A.36)

Proof: By (A.35) and (A.34)∑
d|n
µ(n/d)g(d) =

∑
d|n
µ(n/d)

∑
e|d
f(e) =

=
∑

e|n
f(e)

∑
d, e|d|n

µ(n/d) = f(n).

2

Definition A.4.12 Let q be such that a finite field of cardinality q exists. Then we
define

Iq(n) = # q-ary, irreducible, monic polynomials of degree n.

Without proof we state the following theorem:

Theorem A.4.13∑
d|n
dIq(d) = qn (A.37)

and thus by Theorem A.4.11

Iq(n) =
1

n

∑
d|n
µ(d)qn/d. (A.38)

In particular

qn

n

{
1− 1

qn/2−1

}
≤ Iq(n) ≤ qn

n

{
1− 1

qn−1

}
, (A.39)

and

Iq(n) > 0. (A.40)
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An important property of the ring F [x] of polynomials over a field F and one which will
be needed in the next section is the following theorem.

Theorem A.4.14 Any polynomial of degree n, n > 0, over a field F has at most n
zeroes in F.

Proof: For n = 1 the statement is trivial.

We proceed by induction on n. Let u ∈ F be a zero of a polynomial f(x) in F [x] of
degree n (if no such u exists, there is nothing to prove). Write f(x) = (x−u)q(x)+r(x),
degree(r(x)) < degree(x−u) = 1. It follows that r(x) is a constant r. Substituting x = u
yields r = 0. So f(x) = (x − u)q(x). Since q(x) has degree n − 1, it follows from the
induction hypothesis that q(x) will have at most n− 1 zeroes in F. Because a field does
not have zero-divisors, it follows from f(x) = 0 that x = r or q(x) = 0. From this we
deduce that f(x) has at most n zeroes in F.

2

Note that in Theorem A.4.14 the zeroes do not have to be distinct.

A.5 The structure of finite fields

It follows from Theorems A.4.2, A.4.6 and inequality (A.40), that finite fields (Fq,+,×)
exist for all prime powers q. We state this as a theorem.

Theorem A.5.1 Let p be a prime and q = pm, m ≥ 1. Then a finite field of order q
exists.

Later in this section we shall see that every finite field can be described by the construc-
tion of Theorem A.4.6, but first we shall prove an extremely useful property of finite
fields: their multiplicative group is cyclic.

Since the multiplicative group of Fq consists of q − 1 elements, it follows from Theorem
A.3.13 that every nonzero element in Fq has an order dividing q − 1.

Definition A.5.2 An element α in a finite field of order q is called an n-th root of unity
if αn = e. An element α is called a primitive n-th root of unity if its order is exactly n.
If α is a primitive (q − 1)-st root of unity, then α is called a primitive element of Fq.

If one can show that Fq must contain a primitive element α, then the multiplicative
group of Fq is cyclic and will be generated by α.

Theorem A.5.3 Let (Fq,+,×) be a finite field and let d be an integer dividing q − 1.
Then Fq contains exactly φ(d) elements of order d. In particular (Fq \{0},×) is a cyclic
group of order q − 1, which contains φ(q − 1) primitive elements.
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Proof: By Theorem A.3.13 every nonzero element in Fq has a multiplicative order
d, dividing q − 1. On the other hand, suppose that Fq contains an element of order
d, d | (q − 1), say α. Then by Theorem A.4.14 (the zeroes of xd − 1 are precisely
1, α, . . . , αd−1) every d-th root of unity in Fq is a power of α. It follows from the remark
below Lemma A.3.12 that Fq contains exactly φ(d) elements of order d, namely the
elements αi, with 0 ≤ i < d and gcd(i, d) = 1.

Let a(d) be the number of elements of order d in Fq. Then the reasoning above implies
that i) a(d) is either 0 or equal to φ(d) and also that ii)

∑
d|q−1 a(d) = q−1. On the other

hand, Theorem A.1.7 states that
∑

d|q−1 φ(d) = q − 1. It follows that a(d) = φ(d) for all
d | (q − 1).

2

Corollary A.5.4 Every element α in Fq satisfies

αqn

= α, n ≥ 1. (A.41)

Proof: Equation (A.41) trivially holds for α = 0. By Theorem A.3.13 or Theorem A.5.3
any nonzero element α in Fq has an order dividing q − 1. So it satisfies αq−1 = e. Since
(q − 1) | (qn − 1), it follows also that αqn−1 = e and thus that αqn

= α.

2

Corollary A.5.5 Let Fq be a finite field. Then

xq − x =
∏

α∈Fq
(x− α). (A.42)

Proof: Every element α in Fq is a zero of xq − x by Corollary A.5.4. So the right hand
side in (A.42) divides the left hand side. Because both sides in (A.42) are monic and of
the same degree, equality holds.

2

Example A.5.6 Consider the finite field (F2[x]/(f(x)),+,×), with f(x) = x4 + x3 +
x2 +x+1. It contains 24 = 16 elements, which can be represented by binary polynomials
of degree < 4. The element x, representing the class < x >, is not a primitive element,
since x5 ≡ (x+ 1)f(x) + 1 ≡ 1 (mod f(x)). So x has order 5 instead of 15.

The element 1 + x is primitive, as one can verify in Table A.1, where the successive
powers of 1+x are written as polynomials in x of degree < 4. Multiplication of two field
elements can be converted by means of Table A.1 into the much easier multiplication of
two powers of the primitive 15-th root of unity 1 + x (the exponents only have to be
added modulo 15). For instance

(1 + x+ x2 + x3)(x+ x3) ≡ (1 + x)3(1 + x)14 ≡ (1 + x)17 ≡

≡ (1 + x)2 ≡ 1 + x2 (mod f(x)).
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1 x x2 x3

0 0 0 0 0
(1 + x)0 1 0 0 0
(1 + x)1 1 1 0 0
(1 + x)2 1 0 1 0
(1 + x)3 1 1 1 1
(1 + x)4 0 1 1 1
(1 + x)5 1 0 1 1
(1 + x)6 0 0 0 1
(1 + x)7 1 1 1 0
(1 + x)8 1 0 0 1
(1 + x)9 0 0 1 0
(1 + x)10 0 0 1 1
(1 + x)11 1 1 0 1
(1 + x)12 0 1 0 0
(1 + x)13 0 1 1 0
(1 + x)14 0 1 0 1

Table A.1: (F2[x]/(x
4 + x3 + x2 + x+ 1),+,×), with primitive element 1 + x.

The element x+ 1 is a zero of the irreducible polynomial y4 + y3 + 1, as can be checked
from (1 + x)4 + (1 + x)3 + 1 ≡ (1 + x4) + (1 + x + x2 + x3) + 1 ≡ 0 (mod f(x)). So in
(F2[x]/(g(x)),+, ·), with g(x) = x4 + x3 + 1, the element x is a primitive element. See
Table A.2.

Tables A.1 and A.2 are both so-called log tables of GF (16).

As a first step in proving that every finite field has a size that is the power of a prime,
consider the successive sums of the unit-element e in Fq: so e, 2e, 3e, etc. Since Fq is
finite, not all these sums can be different. On the other hand, if ie = je, i < j, then also
(j − i)e = 0. These observations justify the following definition.

Definition A.5.7 The characteristic of a finite field Fq with unit-element e, is the
smallest positive integer k such that ke = 0.

Lemma A.5.8 The characteristic of a finite field Fq is a prime.

Proof: Suppose that the characteristic k is composite, i.e. k = ij, where i > 1 and j > 1.
Then 0 = ke = (ie)(je), while ie 6= 0 and je 6= 0. So ie and je would be zero-divisors,
contradicting that Fq is a field.

2

Finite fields of the same size may be represented in different ways but still have the same
intrinsic structure.
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1 x x2 x3

0 0 0 0 0
1 1 0 0 0
x1 0 1 0 0
x2 0 0 1 0
x3 0 0 0 1
x4 1 0 0 1
x5 1 1 0 1
x6 1 1 1 1
x7 1 1 1 0
x8 0 1 1 1
x9 1 0 1 0
x10 0 1 0 1
x11 1 0 1 1
x12 1 1 0 0
x13 0 1 1 0
x14 0 0 1 1

Table A.2: (F2[x]/(x
4 + x3 + 1),+,×), with primitive element x.

Definition A.5.9 Two finite fields (Fq,+, ·) and (Fq′ ,⊕,�) are said to be isomorphic,
if there exists a one-to-one mapping ψ from Fq onto Fq′ (so q = q′), such that for all a
and b in Fq

ψ(α+ β) = ψ(α)⊕ ψ(β)

ψ(α× β) = ψ(α)� ψ(β).

In words: two fields are isomorphic if the addition and multiplication tables of both fields
are the same, apart from a renaming of the fields elements.

Lemma A.5.10 Let (Fq,+, ·) be a finite field of characteristic p. Then (Fq,+, ·) con-
tains a subfield which is isomorphic to (Zp,+, ·), the field of integers modulo p.

Proof: Let e be the unit-element of (Fq,+, ·). The subset {ie | i = 0, 1, . . . , p−1} forms
a subfield of (Fq,+, ·) which is isomorphic to (Zp,+, ·) under the (obvious) isomorphism
ψ(ie) =< i >, 0 ≤ i < p.

2

In view of Lemma A.5.10 we can and shall from now on identify the above mentioned
subfield of order p in a finite field (of characteristic p) with the field Zp. The subfield Fp

is often called the ground field of Fq. Conversely the field Fq is called an extension field
of Fp.
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Theorem A.5.11 Let Fq be a finite field of characteristic p. Then q = pm, for some
integer m, m ≥ 1.

Proof: Let m be the size of the smallest basis of Fq over Fp, i.e. m is the smallest
integer such that for suitably chosen elements αi, 1 ≤ i ≤ m, in Fq every element x in
Fq can be written as

x = u1α1 + u2α2 + · · ·+ umαm,

where ui ∈ Fp, 1 ≤ i ≤ m.

Clearly q ≤ pm. On the other hand it follows from the minimality of m that different
m-tuples u1, u2, . . . , um yield different field elements x. So pm ≥ q. We conclude that
q = pm.

2

At this moment we know that a finite field Fq can only exist for prime powers q. Theorem
A.5.1 states that Fq indeed does exist if q is a prime power. That all finite fields of the
same size are in fact isomorphic to each other (and thus can be constructed by Theorem
A.4.6) will be proved later.

Theorem A.5.12 Let α be an element in a finite field Fq of characteristic p. Then over
Fp (and any extension field of it)

(x− α)p = xp − αp. (A.43)

Proof: Let 0 < i < p. Then gcd(p, i!) = 1, so(
p
i

)
≡ p(p−1)···(p−i+1)

i(i−1)···2·1 ≡ p (p−1)···(p−i+1)
i(i−1)···2·1 ≡ 0 (mod p).

And so with the binomial theorem, we have that

(x− α)p = xp + (−α)p = xp − αp,

where the last equality is obvious for odd p, while for p = 2 this equality follows from
+1 = −1.

2

Corollary A.5.13 Let αi, 1 ≤ i ≤ k, be elements in a finite field Fq of characteristic
p. Then for every n

(∑k

i=1
αi

)pn

=
∑k

i=1
αpn

i .

Proof: For k = 2, n = 1 the statement follows again from the previous theorem (take
x = −α1, α = α2). Next use an induction argument on k and finally on n.
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2

The following theorem often gives a powerful criterion to determine whether an element
in a field Fq of characteristic p, actually lies in its ground field Fp.

Theorem A.5.14 Let Fq be a finite field of characteristic p. So q = pm, m > 0, and
Fq contains Fp as a subfield. Let α be an element in Fq. Then α is an element of the
subfield Fp if and only if α satisfies

αp = α. (A.44)

Proof: The p elements in the subfield Fp satisfy (A.44) by Corollary A.5.4. On the
other hand the polynomial xp − x has at most p zeroes in Fq by Theorem A.4.14, so it
can not have any other zeroes.

2

Let α be an element in Fq, a field of characteristic p, but α 6∈ Fp. Then αp 6= α by the
previous theorem. Still there is a relation between αp and α.

Theorem A.5.15 Let α be an element in a finite field Fq of characteristic p. Let f(x)
be a polynomial over Fp such that f(α) = 0. Then for all n ∈ N

f(αpn

) = 0. (A.45)

Proof: Write f(x) =
∑m

i=0 fix
i, fi ∈ Fp. By Theorem A.5.14, fpn

i = fi, 0 ≤ i ≤ m. Hence
by Corollary A.5.13

0 = (f(α))pn
= (

∑m

i=0
fiα

i)pn
=
∑m

i=0
(fiα

i)pn
=

∑m

i=0
fpn

i αi·pn
=
∑m

i=0
fi(α

pn
)i = f(αpn

).

2

In the field R and its extension field C a similar phenomenon occurs. If f(x) is a
polynomial over the reals and f(a) = 0, a ∈ C , then also f(a) = 0, where a is the
complex conjugate of a.

The following theorem states that the number of different elements αpn
, n = 0, 1, . . . ,

only depends on the numbers p and the order of α. Note that an element in a finite field
of characteristic p will have an order dividing pm − 1 for some value of m and thus this
order will have no factor in common with p.

Theorem A.5.16 Let α be an element of order n in a finite field of characteristic p. Let
m be the multiplicative order of p modulo n, i.e. pm ≡ 1 (mod n), with m ≥ 1 minimal.
Then the m elements

α, αp, αp2
, . . . , αpm−1
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are all distinct and αpm
= α.

Proof: By Lemma A.3.11 (twice) one has that αpi
= αpj

if and only if pi ≡ pj (mod n),
i.e. iff pi−j ≡ 1 (mod n), i.e. iff i ≡ j (mod m).

2

The m elements α, αp, αp2
, . . . , αpm−1

in Theorem A.5.16 are called the conjugates of α.

Example A.5.17 Consider (F2[x]/(f(x)),+, ·) with f(x) = x4 + x3 + x2 + x + 1 (see
Example A.5.6). The element x has order 5. The multiplicative order of 2 modulo 5 is
4. So x, x2, x22

and x23
are all different, while x24

= x. Indeed, x8 ≡ x3 (mod f(x)) and
x16 ≡ x (mod f(x)).

Theorem A.5.18 Let α be an element of order n in a finite field Fq of characteristic
p. Let m be the multiplicative order of p modulo n. Then the q-ary polynomial

m(x) =
∏m−1

i=0
(x− αpi

) (A.46)

is in fact a polynomial with coefficients in Fp, moreover m(x) is irreducible over Fp.

Proof: Clearly m(x) is a polynomial over Fq. Write m(x) =
∑m

i=0
mix

i. Then by Theo-
rems A.5.12 and A.5.16

(m(x))p =
∏m−1

i=0
(x− αpi

)p =
∏m−1

i=0
(xp − αpi+1

) =

=
∏m

i=1
(xp − αpi

) =
∏m−1

i=0
(xp − αpi

) = m(xp).

Hence∑m

i=0
mix

pi = m(xp) = (m(x))p =
(∑m

i=0
mix

i
)p

=
∑m

i=0
mp

ix
pi.

Comparing the coefficients of xpi on both hands yields mi = mp
i . From Theorem A.5.14

we conclude that mi ∈ Fp, 0 ≤ i ≤ m. So m(x) is a polynomial in Fp[x]. From Theorems
A.5.15 and A.5.16 it follows that no polynomial in Fp[x] of degree less than m can have
α as a zero. So m(x) is irreducible in Fp[x].

2

Corollary A.5.19 Let α be an element of order n in a finite field of characteristic p.
Let m(x) be defined by (A.46) and let f(x) be any p-ary polynomial that has α as zero.
Then f(x) is a multiple of m(x).

Proof: Combine Theorems A.5.15, A.5.16 and A.5.18.

2

So m(x) is the monic polynomial of lowest degree over Fp, having α as a zero. For this
reason the polynomial m(x) is called the minimal polynomial of α. It has α and all the
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conjugates of α as zeroes. The degree of the minimal polynomial m(x) of an element α
is often simply called the degree of α.

If m(x) is the minimal polynomial of a primitive element, then m(x) is called a prim-
itive polynomial. Let α be a zero of a primitive polynomial m(x). Often the minimal
polynomial of a power αi will be denoted by mi(x).

Example A.5.20 Consider (F2[x]/(f(x)),+, ·) with f(x) a fourth degree irreducible
polynomial and let α be one of the primitive elements of this field.

Clearly m0(x) = x − 1. Also m3(x) and m5(x) are easily determined. Indeed, m5(x)
has as zeroes α5 and its conjugates, so α5 and α10. Both these elements have order 3,
and thus they are both zeroes of (x3 − 1)/(x − 1) = x2 + x + 1. We conclude that
m5(x) = x2 + x + 1. For exactly the same reason the four primitive 5-th roots of unity
α3, α6, α9, α12 form the zeroes of m3(x) = x4 + x3 + x2 + x+ 1.

Since there are only two irreducible polynomials of degree four left, being x4 +x+1 and
x4 + x3 + 1, it follows that m1(x) = x4 + x + 1 and m−1(x) = m7(x) = x4 + x3 + 1, or
the other way around. Both apparently are primitive polynomials.

Let m(x) be the minimal polynomial of an element α of degree m. It follows from
Corollary A.5.19 that the pm expressions

∑m−1
i=0 fiα

i, fi ∈ Fp, 0 ≤ i < m, take on pm

different values. For these expressions addition and multiplication can be performed,
just as in (A.30) and (A.31), where now m(α) = 0 has to be used to reduce the degree
of the outcome to a value less than m. It is quite easy to check that one obtains a field,
that is isomorphic to Fp[x]/(m(x)) and that clearly contains α.

If m(x) is primitive, one has that 1, x, . . . , xpm−2 are all different modulo m(x), just as
the elements 1, α, . . . , αpm−2 are all different. See for instance Example A.5.6, where the
primitive element a = 1+x has minimal polynomial m(y) = 1+y3 +y4. Table A.2 shows
the field F2[y]/(m(y)).

Lemma A.5.21 Let m(x) be an irreducible polynomial of degree m over a field with p
elements and let n be a multiple of m. Then m(x) divides xpn − x.

Proof: Consider the residue class ring Fp[x]/(m(x)). This ring is a field with q = pm

elements by Theorem A.4.6. The field element α =< x > is a zero of m(x), since
m(α) = m(< x >) =< m(x) >=< 0 > . It follows from Corollary A.5.4 that α =< x >
is a zero of xpn − x, n ≥ 1. By Corollary A.5.19 m(x) divides xpn − x.

2

Also the converse of Lemma A.5.21 is true.

Theorem A.5.22 Over Fp[x] the polynomial xpn − x is the product of all irreducible,
monic, p-ary polynomials with a degree dividing n.

Proof: Let m | n. By definition, there are Ip(m) irreducible p-ary polynomials of degree
m, all of which divide xpn − x by Lemma A.5.21. The sum of their degrees is mIp(m).
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But
∑

m|nmIp(m) = pn by (A.37), which is the degree of (xpn − x). It follows that
the product of all irreducible, monic, p-ary polynomials of degree m, m | n, forms the
complete factorization of xpn − x.

2

Example A.5.23 p = 2, n = 4, I2(1) = 2, I2(2) = 1 and I2(4) = 3 (see Section A.4).
As follows from Theorem A.5.22, but can also be checked directly, one indeed has that

x16 − x =

= x(x+ 1)(x2 + x+ 1)(x4 + x+ 1)(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1).

Corollary A.5.24 Let f(x) be an irreducible polynomial in Fp[x] of degree m. Let m | n.
Then a finite field with pn elements contains m roots of f(x).

Proof: By Theorem A.5.22 f(x) divides xq − x, q = pn. On the other hand xq − x =∏
α∈Fq

(x− α), by (A.42).

2

Theorem A.5.25 Let p be a prime and m in N . Then the finite field Fpm is unique,
up to isomorphism.

Proof: Write q = pm and let Fq be any finite field of order q. Let f(x) be any irreducible,
p-ary polynomial of degree m. We shall show that Fq is isomorphic to Fp[x]/(f(x)).

By Corollary A.5.24 Fq contains m zeroes of f(x). Let α be one of these m zeroes. Since
f(x) is irreducible in Fp[x], we know that 1, α, . . . , αm−1 are independent over Fp. So
any element in Fq can be uniquely written as

∑m−1
i=0 uiα

i, ui ∈ Fp, 0 ≤ i ≤ m− 1.

The isomorphism Fq between and Fp[x]/(f(x)) is given by ψ(
∑m−1

i=0 uiα
i) =

∑m−1
i=0 uix

i.

2

Corollary A.5.26 Fpm is (isomorphic to) a subfield of Fpn if and only if m divides n.

Proof: The following assertions are all equivalent:

i) m | n,
ii) (pm − 1) | (pn − 1),

iii) xpm − x divides xpn − x,
iv)

∏
α∈Fpm (x− α) divides

∏
α∈Fpn (x− α),

v) Fpm is (isomorphic to) a subfield of Fpn . 2

Example A.5.27 It follows from Corollary A.5.26 that F24 contains F22 as a subfield,
but does not contain F23 as a subfield. From Table A.2 one can easily verify that the
elements 0, 1, x5 and x10 form the subfield of order 22 in F2[x]/(x

4 + x3 + 1).
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Most of the time in this appendix we have viewed Fq, q = pm and p prime, as an extension
field of Fp. But all the concepts, defined in this appendix, can also be generalized to
Fq[x]. So one may want to count the number of irreducible polynomials of degree n in
Fq[x] or discuss primitive polynomials over Fq, etc. We leave it to the reader to verify
that all the theorems in this appendix can indeed be generalized from Fp and Fpm to Fq

resp. Fqm , simply by replacing p by q and q by qm.

Example A.5.28 The field F16 can be viewed as the residue class ring F4[x]/ (x2 +x+
α), where α is an element in F4, satisfying α2 + α+ 1 = 0.

A.6 Problems

A.6.1 Let the sequence of Fibonacci numbers {Fn}∞n=0 be defined recursively by F0 = 0,
F1 = 1 and Fn = Fn−1 + Fn−2, n ≥ 2.

Show that for n ≥ 3 Euclid’s Algorithm (Algorithm A.1.3) applied to Fn−1 and Fn

determines their gcd in exactly n− 2 iterations.

A.6.2 Use an induction argument to show that the computation of the gcd of integers
a and b, b ≥ a, by Euclid’s Algorithm involves at most b logf bc iterations, where

f = (1 +
√

5)/2. (Hint: distinguish the cases a ≤ b/f and b/f < a ≤ b.)

Note that b logf Fnc = n− 2.

A.6.3 Let p be a prime number dividing a1a2 · · · ak, where ai ∈ Z, 1 ≤ i ≤ k. Show that
p divides at least one of the factors ai, 1 ≤ i ≤ k.

Prove Theorem A.1.5.

A.6.4 Describe the congruence relation, as defined in (A.16), as an equivalence relation
(see Definition A.2.1), so give the sets S and U.

A.6.5 Give a formal proof of Lemma A.3.5.

A.6.6 Prove the equivalence of (H2) and (H3) with (H) in Section A.3.

A.6.7 What are the subgroups of (Z15,+) and of (Z∗
17,×) ?

What is the multiplicative order of the various elements in (Z∗
17,×)?

A.6.8 Prove that (A.25) indeed defines an equivalence relation and show that the equiv-
alence classes are given by {ha | h ∈ H}, where a ∈ G.

A.6.9 Prove that the set (1 + x3) in F2[x], consisting of all polynomial multiples of the
polynomial 1 + x3, is an ideal in (F2[x],+,×).

Give a pair of zero-divisors in the residue class ring (F2[x]/(1 + x3),+,×).
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A.6.10 What is the product of the binary polynomials 1+x2 +x4 and 1+x+x3 modulo
1 + x2 + x5?

A.6.11 Find all binary, irreducible polynomials of degree 2, 3, and 4 and check (A.38).

A.6.12 Use Euclid’s Algorithm to find the multiplicative inverse of 1 + x+ x3 (mod 1 +
x2 + x5) over F2.

A.6.13 What are the multiplicative orders of x and of x2 +x3 in (F2[x]/(1+x+x2 +x3 +
x4),+,×)? What is the product of these two elements and what is its multiplicative
order?

A.6.14 Make a log table of GF (3)[x]/(2 + 2x+ x2) (hint: x is a primitive element).

A.6.15 Let α be a primitive element of GF (26). Determine the zeroes of the minimal
polynomials of α, α3 and α9.

A.6.16 What is the smallest extension field of GF (3) containing a primitive 11-th root
of unity α?

What is the degree of the minimal polynomial of α and what are the zeroes of this
polynomial?

A.6.17 Which subfields are contained in GF (625). Let α be a primitive element in
GF (625). Which powers of α constitute the various subfields of GF (625).

A.6.18 What is the degree of a binary minimal polynomial of a primitive 17-th root of
unity? How many such polynomials do exist? Prove that each is its own reciprocal.
Determine them explicitly.

A.6.19 The trace mapping Tr is defined on GF (pm), p prime, by

Tr(x) = x+ xp + xp2
+ · · ·+ xpm−1

.

1. Prove that Tr(x) ∈ GF (p), for every x ∈ GF (pm). So Tr is a mapping from
GF (pm) to GF (p).

2. Prove that Tr is a linear mapping from GF (pm) to GF (p).

3. Prove that Tr takes on every value in GF (p) equally often (hint: use Theorem
A.4.14).
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Tables of GF (2m), m = 3, 4, 5, 6

1 α α2

1 1 0 0
α 0 1 0
α2 0 0 1
α3 1 1 0
α4 0 1 1
α5 1 1 1
α6 1 0 1

Table B.1: GF (23) generated by α, α3 + α+ 1 = 0.
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1 α α2 α3

1 1 0 0 0
α 0 1 0 0
α2 0 0 1 0
α3 0 0 0 1
α4 1 1 0 0
α5 0 1 1 0
α6 0 0 1 1
α7 1 1 0 1
α8 1 0 1 0
α9 0 1 0 1
α10 1 1 1 0
α11 0 1 1 1
α12 1 1 1 1
α13 1 0 1 1
α14 1 0 0 1

Table B.2: GF (24) generated by α, α4 + α+ 1 = 0.
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1 α α2 α3 α4

1 1 0 0 0 0
α 0 1 0 0 0
α2 0 0 1 0 0
α3 0 0 0 1 0
α4 0 0 0 0 1
α5 1 0 1 0 0
α6 0 1 0 1 0
α7 0 0 1 0 1
α8 1 0 1 1 0
α9 0 1 0 1 1
α10 1 0 0 0 1
α11 1 1 1 0 0
α12 0 1 1 1 0
α13 0 0 1 1 1
α14 1 0 1 1 1

α15 1 1 1 1 1
α16 1 1 0 1 1
α17 1 1 0 0 1
α18 1 1 0 0 0
α19 0 1 1 0 0
α20 0 0 1 1 0
α21 0 0 0 1 1
α22 1 0 1 0 1
α23 1 1 1 1 0
α24 0 1 1 1 1
α25 1 0 0 1 1
α26 1 1 1 0 1
α27 1 1 0 1 0
α28 0 1 1 0 1
α29 1 0 0 1 0
α30 0 1 0 0 1

Table B.3: GF (25) generated by α, α5 + α2 + 1 = 0.

145



APPENDIX B. TABLES OF GF (2M), M = 3, 4, 5, 6

1 α α2 α3 α4 α5

0 0 0 0 0 0 0
1 1 0 0 0 0 0
α1 0 1 0 0 0 0
α2 0 0 1 0 0 0
α3 0 0 0 1 0 0
α4 0 0 0 0 1 0
α5 0 0 0 0 0 1
α6 1 1 0 0 0 0
α7 0 1 1 0 0 0
α8 0 0 1 1 0 0
α9 0 0 0 1 1 0
α10 0 0 0 0 1 1
α11 1 1 0 0 0 1
α12 1 0 1 0 0 0
α13 0 1 0 1 0 0
α14 0 0 1 0 1 0
α15 0 0 0 1 0 1
α16 1 1 0 0 1 0
α17 0 1 1 0 0 1
α18 1 1 1 1 0 0
α19 0 1 1 1 1 0
α20 0 0 1 1 1 1
α21 1 1 0 1 1 1
α22 1 0 1 0 1 1
α23 1 0 0 1 0 1
α24 1 0 0 0 1 0
α25 0 1 0 0 0 1
α26 1 1 1 0 0 0
α27 0 1 1 1 0 0
α28 0 0 1 1 1 0
α29 0 0 0 1 1 1
α30 1 1 0 0 1 1

α31 1 0 1 0 0 1
α32 1 0 0 1 0 0
α33 0 1 0 0 1 0
α34 0 0 1 0 0 1
α35 1 1 0 1 0 0
α36 0 1 1 0 1 0
α37 0 0 1 1 0 1
α38 1 1 0 1 1 0
α39 0 1 1 0 1 1
α40 1 1 1 1 0 1
α41 1 0 1 1 1 0
α42 0 1 0 1 1 1
α43 1 1 1 0 1 1
α44 1 0 1 1 0 1
α45 1 0 0 1 1 0
α46 0 1 0 0 1 1
α47 1 1 1 0 0 1
α48 1 0 1 1 0 0
α49 0 1 0 1 1 0
α50 0 0 1 0 1 1
α51 1 1 0 1 0 1
α52 1 0 1 0 1 0
α53 0 1 0 1 0 1
α54 1 1 1 0 1 0
α55 0 1 1 1 0 1
α56 1 1 1 1 1 0
α57 0 1 1 1 1 1
α58 1 1 1 1 1 1
α59 1 0 1 1 1 1
α60 1 0 0 1 1 1
α61 1 0 0 0 1 1
α62 1 0 0 0 0 1

Table B.4: GF (26) generated by α, α6 + α+ 1 = 0.

146



Appendix C

Solutions to the problems

C.1 Solutions to Chapter 1

1.4.1 When 000000 has been transmitted, the receiver will not detect transmission errors
if the error pattern is 001111, 110011 or 111100. This happens with probablity
p4(1− p)2 + p4(1− p)2 + p4(1− p)2.

One finds the same probability of undetected error when one of the other three
words has been transmitted. So the overall probability of undetected error is equal
to 3p4(1− p)2.

1.4.2 It follows from

p(−1| − 1)p(0.01| − 1)p(0.01| − 1) =

=
(

1√
2π

)3
e−(02+1.012+1.012)/2

≈ 0.0229.

and

p(−1|+ 1)p(0.01|+ 1)p(0.01|+ 1) =

=
(

1√
2π

)3
e−(22+0.992+0.992)/2

≈ 0.0032.

that any reasonable soft decision decoding rule will decode (−1, 0.01, 0.01) into
(−1,−1,−1).

With hard decision decoding the received sequence is transformed into
(−1,+1,+1). Now (+1,+1,+1) is the most likely transmitted word, because the
probability that (+1,+1,+1) is transmitted given that (−1,+1,+1) is received is
p(1−p)2 with p = 1√

2π

∫
x≥0 e

−(x+1)2/2dx. This exceeds the probability that (−1,−1,

−1) is transmitted given that (−1,+1,+1) is received, which is p2(1− p).
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C.2 Solutions to Chapter 2

2.5.1 According to (2.4) |B1(x)| = 1 + 6(2− 1) = 7.

If there are 9 words of length 6 at mutual distance at least 3, then at least d9/2e = 5
of them will have the same first coordinate and at least d9/4e = 3 of them will
have the same first two coordinates. Deleting the first two coordinates in these
3 words (a technique called shortening in Definition 3.1.2) yields three words of
length 4 and at mutual distance at least 3. However to two words of length 4 and
at distance three no third word can be added.

2.5.2 If such a code contains two words at distance 5 or 6 (w.l.o.g. these words are
000000 and 11111?) each other codeword will have distance 3 or less to at least
one of these. So the minimum distance of such a code is at most 4 and in this case
each pair of codewords must have distance exactly 4. Starting with 000000 and
111100 one finds (up to isomorphism) a unique (6,4,4)-code. This code, say C,
is linear, consist of the words 000000, 111100, 110011 and 001111 and has parity
check matrix

H =


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 1 0

 .
C has one coset with unique coset leader of weight 0, six cosets with unique coset
leader of weight 1 (namely with syndromes abc∗T with abc of weight 1), six cosets
with two coset leaders of weight 2 (namely with syndromes abc∗T with abc of
weight 2), one coset with three coset leaders of weight 2 (namely with syndrome
0001T ), and two cosets with four coset leaders of weight 3 (namely with syndromes
111∗T ).

So the probability of correctly decoding a received word with a maximum likelihood
decoding algorithm is given by

(1− p)6 + 6p(1− p)5 + 6p2(1− p)4 + p2(1− p)4 + 2p3(1− p)3.

2.5.3 It follows from Theorem 2.1.8 that a ternary (4, 9, 3) code is systematic on each
two coordinates. This makes it easy to find the following code:

0000 1012 2021
0111 1120 2102
0222 1201 2210

A code with these parameters is perfect, which also makes it easy to find it. The
above code is also linear with parity check matrix

H =

(
0 1 1 1
1 0 1 2

)
.
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In Chapter 3 this code will be called the ternary Hamming code of length 4 (see
Definition 3.2.1).

2.5.4 If two codewords have Hamming distance 1, there is only one coordinate where
they differ. An erasure on that coordinate can not be corrected. We conclude that
the minimum distance has to be at least 2. Conversely, if the distance between
any two codewords is at least 2, one can correct any single erasure.

The maximum size code of length 5 and minimum distance 2 is the even weight
code. This can be seen directly but also follows from Theorem 2.1.8.

If a received word contains at most one erasure, there is a unique codeword co-
inciding with it on the other positions. The possible coordinate with the erasure
can be determined by the rule that the codeword has even weight. Hence, the
probability of correctly decoding is p5 + 5qp4 = 0.91854.

Received words with more erasures can also be decoded with some probability
of success. Indeed, if a received word contains t erasures, one can guess t − 1
coordinates and fill in the last one in such a way that the weight becomes even.
In this way the probability of decoding correctly is

p5 +
5∑

t=1

1

2t−1

(
5

t

)
qtp5−t = 0.95707.

2.5.5 Consider two binary vectors, called x and y, of even weight, say 2v and 2w. Let
their inner product be i, so without loss of generality:

x =

i︷ ︸︸ ︷
1 · · · 1

2v−i︷ ︸︸ ︷
11 · · · 1

2w−i︷ ︸︸ ︷
00 · · · 0 0 · · · 0

y = 1 · · · 1 00 · · · 0 11 · · · 1 0 · · · 0
x+ y = 0 · · · 0 11 · · · 1 11 · · · 1 0 · · · 0

So x+ y has weight 2v + 2w − 2i, which is also even.

Since each vector in C is a sum of rows of G, each of even weight, it follows (with
an induction argument) that each word in C has even weight.

2.5.6 a) Vector (111101000) has syndrome (1111)T , which is the 5-th column of H. So
its coset leader is (000010000).

b) Vector (110101011) has syndrome (0101)T , which is not equal to one of the
columns of H. It can be written as sum of two columns of H in the following
ways: 1+9, 2+6, 4+8. So the coset leaders are (100000001), (010001000) and
(000100010).

c) Vector (010010010) has syndrome (0000)T , so it is a codeword. Its coset leader
is (000000000).
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2.5.7 Take two rows from G, say x and y. Use the same approach as in the solution of
Problem 2.5.5. The weights of x and y can now be written as 4v and 4w and their
inner product (x, y) as 2i, because C is self dual and thus each inner product is
even. It follows that x + y has weight 4v + 4w − 2 · 2i, which is again a multiple
of four.

For an arbitrary vector in the code, which is the sum of rows of G, one again uses
an induction argument.

2.5.8 If all the codewords have a weight divisible by 4, it follows that 1 is in the dual
code C⊥. Since C = C⊥ we can conclude that 1 is an element in C.

Let Ai, 0 ≤ i ≤ 24, be the weight enumerator of C. Since 1 ∈ C it follows that
Ai = A24−i From d = 8 and the divisibility of all weights by 4, the non-zero
coefficients in the weight enumerator are A0 = A24 = 1, A8 = A16 and A12. Since
|C| = 212 also the relation 2+2A8 +A12 = 4096 holds. We need one more relation.

The coefficient of z2 in the MacWilliams relation (2.22) gives:

0 =

(
24

2

)
+ A8

((
8

2

)
− 8

)
+ A12(−12) +

+A8

((
8

2

)
− 8

)
+

(
24

2

)
,

i.e.

−10A8 + 3A12 = 138.

Combining the two relations yields the weight enumerator A0 = A24 = 1, A8 =
A16 = 759 and A12 = 2576.

2.5.9 A vector c is in the code C if and only if HcT = 0T , i.e. if and only if the columns
in H corresponding to the non-zero coordinates of c are linearly dependent.

A vector x is at distance δ from the code C if it is in a coset with coset leader of
weight δ, i.e. if it (or the coset leader) can be written as linear combination of δ
columns of H but not of less.

2.5.10 Consider a k-tuple of coordinates. Puncturing the other d− 1 coordinates in the
code yields, according to the proof of Theorem 2.1.8, a (k, qk, 1) code. So C is
systematic on these k coordinates.

Consider any d-tuple of coordinates, put α 6= 0 on the leftmost of these coordinates
and put zeros on the complementary n−d = k−1 positions. Since C is systematic
on these k coordinates, it follows that exactly one codeword exists that coincides
with these k entries. From the minimum distance d one can conclude that this
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unique codeword has weight d and has all its nonzero entries on the chosen d-tuple
of coordinates. It follows that

Ad =

(
n

d

)
(q − 1).

2.5.11 Apply Theorems 2.1.9, 2.1.8 and 2.1.3.

n = 16 d = 3 d = 5 d = 7 d = 9
Gilbert 479 27 5 2
Gilbert for
linear codes 29 25 23 21

Singleton 214 212 210 28

Hamming 3855 478 94 26

2.5.12 Without loss of generality one gets

H =


0000100101101111
0001001010110111
0010010011011011
0100011100011101
1000011111100001

 .

The length n is equal to the number of odd weight vectors of lengthm, so n = 2m−1.

The all-zero vector is a codeword, so has distance 0 to the code. The vector
1000000000000000 has distance 1 to the code (because its syndrome is 00001T ,
which is the first column) and the vector 1100000000000000 has distance 2 to the
code (because its syndrome is 00011T , which does not occur as column, but is the
sum of the first two columns).

The matrix H contains the m (independent) vectors of weight 1, so C has dimen-
sion n−m = 2m−1−m. All columns in H are different, so d ≥ 3. Moreover, the sum
of three binary, odd-weight vectors again has odd weight, so no three columns add
up to 0. In other words d ≥ 4. That d = 4 follows from the existence of codewords
of weight 4. For instance, put ones where H has columns 0 · · · 0001T , 0 · · · 0010T ,
0 · · · 0100T and 0 · · · 0111T .

Consider any non-zero vector s of length m. If the weight of s is odd, s is equal to
a column of H. If its weight is even, s is equal to the sum of two columns a and b
of H. Indeed, take a arbitrary of odd weight, then also b = s− a has odd weight.
It follows that each length n vector lies at distance at most two from C, so the
covering radius ρ is 2.
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Vector 00 · · · 0T is the syndrome of a coset (the code) with unique coset leader
of weight 0. Each of the n = 2m−1 vectors s of odd weight is the syndrome of a
coset with unique coset leader of weight 1: its only 1-coordinate is where column
s occurs in H.

As already observed, each even weight syndrome s and every choice of odd weight
vector a gives a unique different odd weight vector b with s = a+ b and vice versa.
Hence, there are 2m − 1 − n = 2m−1 − 1 cosets with n/2 = 2m−2 coset leaders of
weight 2.

2.5.13 The vector 000010100001010000100010 has syndrome 00000T , so it is a codeword.
The vector 100010001000100010000001 has syndrome 00111T , which is not a col-
umn in H but is the sum of (among others) the 1-st and 8-th columns (01000T and
01111T ). So one can change the 1-st and 8-th coordinates to obtain a codeword.
The vector 010100100110000010100000 has syndrome 01101T , which is the 6-th
column. So correct the 6-th coordinate.

The coset with syndrome 0 is equal to C and has the origin as unique coset leader.
The 24 cosets with syndrome s with (s1, s2) 6= (0, 0) have a unique coset leader
of weight 1. The 1-coordinate of this coset leader is exactly where s appears as
column in H.

The 7 cosets with non-zero syndrome s with (s1, s2) = (0, 0) have twelve coset
leaders of weight 2. Indeed, take an arbitrary column a fromH (so (a1, a2) 6= (0, 0))
and compute b = s− a. Then (b1, b2) = (a1, a2) 6= (0, 0), while b 6= a, and thus b is
a column of H different from a. There are 24 choices for a, so twelve pairs a, b.

The probability of correctly decoding a transmitted codeword is given by

(1− p)24 + 24p(1− p)23 + 7p2(1− p)22.

Since each word is at distance at most 2 from the code one has ρ = 2.

Let x have distance 1 to C, and let its syndrome be s. Since (s1, s2) 6= (0, 0) one
can write s = a + b with a and b columns of H, as long as (a1, a2) 6= (0, 0) and
(a1, a2) 6= (s1, s2). So, for a there are 16 possibilities, leading to 8 pairs a, b. In
other words, x has distance 2 to exactly eight codewords.

If x has distance 2 to C, we know already from the above that its has distance 2
to exactly 12 codewords.

2.5.14 The shortened code has dimension one less than C, so Csh has dimension n−m−1.
The minimum distance does not decrease by shortening, so d ≥ 3. On the other
hand, d can not be 4, because then puncturing Csh would contradict the Hamming
bound (Theorem 2.1.3). We conclude that d = 3. Finally, consider a word x of
length n− 1 = 2m − 2. If (0, x) or (1, x) is at distance at most 1 from a codeword
(0, y) in C, then x is at distance at most 1 from Csh. If (1, x) is at distance ≥ 2
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from the codewords (0, y) in C, then (1, x) is at distance ≤ 1 from a codeword
(1, y) in C (because C is perfect). So (0, x) is at distance 2 from from another
codeword (0, z) in C (again because C is perfect) and thus x is at distance 2 from
z in Csh. It follows that ρ = 2.

Let d(x,Csh) = 1. Without loss of generality x = 10 · · · 0 and c = 0 is in Csh. The
codewords at distance 2 from x must have weight 3, their first coordinate has to
be equal to 1 and the other two 1-coordinates of these words must all different.
Their number B(x, 2) is thus at most b(n− 2)/2c = (n− 3)/2.

The same reasoning when d(x,Csh) = 2 gives B(x, 2) ≤ (n− 1)/2.

It follows that∑
x,d(x,Csh)≥1(B(x, 1) +B(x, 2)) ≤

≤ |Csh|(n− 1){1 + n−3
2
}+

+
(
2n−1 − |Csh|(1 + (n− 1))

)
{0 + n−1

2
} =

= (2n−1 − |Csh|)n−1
2
.

On the other hand∑
x,d(x,Csh)≥1(B(x, 1) +B(x, 2)) =

=
∑
x,d(x,Csh)≥1

∑
c∈Csh, 1≤d(c,x)≤2 1 =

=
∑
c∈Csh

∑
x, 1≤d(x,c)≤2 1 =

= |Csh|{
(

n−1
1

)
+
(

n−1
2

)
}.

It follows from the above two expressions that |Csh|{
(

n
1

)
+
(

n
2

)
} ≤ (2n−1−|Csh|)n−1

2
.

Substitution of |Csh| = 2n−m−1 and n = 2m − 1 yields a left and right hand side
that are equal to each other. It follows that all inequalities in the derivation can
be replaced by equalities. In particular:

d(x,Csh) = 1 ⇒ B(x, 2) = (n− 3)/2,

d(x,Csh) ≥ 1 ⇒ B(x, 2) = (n− 1)/2.

2.5.15 All non-trivial linear combinations of the rows of G have weight 8 on the first
16 coordinates. Their weight on the last 4 coordinates is at least 2 if and only if
at least one of the top three rows is used. So, the bottom vector spans the linear
subcode of weight 8. The weight ≤ 10 vectors span the whole code. So C is a
LUEP code with separation vector (10, 10, 10, 8).

An optimal generator matrix of C is G.
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C.3 Solutions to Chapter 3

3.4.1 Take the [4, 3, 2] even weight code C1 and the [4, 1, 4] repetition code C2 and apply
Theorem 3.1.6.

3.4.2 Let c be a codeword of weight w, w ≥ d. Put it in the top row of a generator
matrix of the code C and permute all the ones of c to the front. One obtains

G =


1 1 · · · 1 0 0 · · · 0

G1 G2

 .
c of weight w

Then exactly the same proof as of Theorem 3.1.4 yields that the code generated by
the last n− d columns of G, i.e. by G2, has parameters [n−w, k− 1,≥ d−bw/2c]
for d ≤ w ≤ 2d − 1. For w ≥ 2d nothing can be said about the dimension or
minimum distance of this code.

3.4.3 Again the generator matrix can be assumed to have the form as in the proof of
Theorem 3.1.4, where one may have had to multiply some of the columns by a
non-zero constant to get only ones as non-zero elements in the top row. So, again

G =


1 1 · · · 1 0 0 · · · 0

G1 G2

 .
c of weight d

Let (a1, a2) be a non-trivial linear combination of the last k − 1 rows of G and let
uα denote the number of coordinates in a1 equal to α. So

∑
α uα = d. Since (a1, a2)

must have distance at least d to αc, one has

(d− uα) + w(a2) ≥ d.

The sum of these inequalities over all α in GF (q) yields qw(a2) ≥ ∑α uα = d, and
thus w(a2) ≥ dd/qe. This proves that the residual code of C with respect to a
weight d code word has parameters [n− d, k − 1,≥ dd/qe].

3.4.4 Assume that a [101, 7, 50] code exists. Taking successive residual codes with re-
spect to minimum weight codewords implies the existence of the following sequence
of codes: [51, 6, 25], [26, 5, 13], [13, 4, 7], [6, 3, 4], [2, 2, 2] and [0, 1, 1]. However
the last code obviously does not exist, so neither does a [101, 7, 50] code.

One can also apply Corollary 3.1.5.
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3.4.5 Clearly, N = n+d−ρ. Also, since d−ρ ≥ 1 it follows that the dimension increases
by 1, i.e. K = k + 1. Finally consider any non-trivial linear combination of the
rows of the given generator matrix of G∗. If it only involves the top k rows, its
weight is at least d by the assumption on C. If it does involve the bottom row,
then the weight of this linear combination is equal to d − ρ plus the distance of
x to a linear combination of the rows of G. This distance is at least ρ, because x
has distance ρ to C. It follows that any non-trivial linear combination of the given
generator matrix has weight at least d and thus D = d.

We conclude that G∗ is a [n+ d− ρ, k + 1, d] code.

3.4.6 By permuting the columns of the generator matrix G∗ of C∗ one may assume
that the first columns are equal to sT . Since s 6= 0, there must be a row in G∗

that starts with s identical non-zero elements. By permuting the rows of G∗ one
can assume that this is the last row and by a suitable scalar multiplication this
non-zero element can be assumed to be 1. So we have the following matrix:

G∗ =


s1 · · · s1
...

... G
sk · · · sk

1 · · · 1 x1 x2 · · · xn

 .

By subtracting si times the last row from row i, 1 ≤ i ≤ k, one can even assume
that s1 = . . . = sk = 0. It follows that G generates an [n, k, d] code C and that x
has distance at least d− s to all codewords in C.

3.4.7 Shortening a linear code with respect to the symbol 0 on coordinate i amounts to:

1) add as row to the parity check matrix the vector that consists of zeros every-
where, except for a one at the i-th coordinate,

2) puncture the i-th coordinate in the subcode defined by this new parity check
matrix (i.e. this subcode consists of all codewords with a zero on the i-th coordi-
nate).

Clearly, the new code has parameters [n− 1,≥ k − 1,≥ d].

Since each codeword in C is orthogonal to x, it follows that the subcode of C
consisting of all codewords that are zero on w − 1 of w one-coordinates of x are
also zero on the w-the coordinate. So, one only has to add w − 1 equations (see
figure below) to the parity check matrix (the dimension of the subcode becomes
k−(w−1)) and one obtains w coordinates where all the codewords in this subcode
are zero (so the length becomes n− w).
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parity check equation x 0 · · · 0 111 · · · 111 0 · · · 0
new parity check equation 0 · · · 0 100 · · · 000 0 · · · 0
new p.c. equation 2 0 · · · 0 010 · · · 000 0 · · · 0

...
...

...
new p.c. equation w − 1 0 · · · 0 000 · · · 010 0 · · · 0

3.4.8 By (3.8) A(z) is given by

A(z) =
1

32

{
(1 + z)31 + 31(1 + z)15(1− z)16

}
.

Since Ai = A31−i, 0 ≤ i ≤ 31, A0 = 1 and A1 = A2 = 0 it suffices to give

A3 = 155

A4 = 1, 085

A5 = 5, 208

A6 = 22, 568

A7 = 82, 615

A8 = 247, 845

A9 = 628, 680

A10 = 1, 383, 096

A11 = 2, 648, 919

A12 = 4, 414, 865

A13 = 6, 440, 560

A14 = 8, 280, 720

A15 = 9, 398, 115.

It follows that

A5(
31
5

)
/25

= 0.981,

A10(
31
10

)
/25

= 0.998,

A15(
31
15

)
/25

= 1.001.

Remark: it can be shown that for m→∞ the ratios
Ai(

2m−1
i

)
/2m

tend to 1.
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3.4.9 That both codes are perfect follows from Theorem 2.1.7 and the observations

212

{
1 +

(
23

1

)
+

(
23

2

)
+

(
23

3

)}
= 223,

36

{
1 +

(
11

1

)
2 +

(
11

2

)
22

}
= 311.

For the recurrence relations of the weight enumerators of these perfect codes we
generalize the result in equation (3.6).

For the binary perfect [23, 12, 7] code one gets, by observing that each word of
weight q in the vector space must be at distance at most 3 to a unique codeword.(

23
w

)
= Aw + (w + 1)Aw+1 + (23 − w + 1)Aw−1 +

(
w+2

2

)
Aw+2 + w(23 − w)Aw +(

23−w+2
2

)
Aw−2 +

(
w+3

3

)
Aw+3 +

(
w+1

2

)
(23 − w + 1)Aw+1 + (w + 1)

(
23−w+1

2

)
Aw−1 +(

23−w+3
3

)
Aw−3,

where the Ai’s are assumed to be zero for i < 0 and i > 23.

Similarly, for the ternary perfect [11, 6, 5] code one gets,(
11
w

)
2w = Aw + (w + 1)Aw+1 + wAw + 2(11 − w + 1)Aw−1 +

(
w+2

2

)
Aw+2 + (w +

1)wAw+1 +2w(11−w)Aw +
(

w
2

)
Aw +(11−w+1)(w− 1)2Aw−1 +

(
11−w+2

2

)
22Aw−2,

where one has to realize that there are two ways of changing a zero into a nonzero
coordinate and one way to change a nonzero coordinate into another nonzero
coordinate.

3.4.10 Puncturing a binary [24, 12, 8] code yields a [23, 12,≥ 7] code containing 0. This
code is perfect by Theorem 2.1.7 and thus its weight enumerator satisfies the
recurrence relation of order seven given in the preceding problem. Since A0 = 1
and A1 = . . . = A6 = 0, this recurrence relation has a unique solution.

Consider the 759 codewords of weight 8 in the [24, 12, 8] code and put them in a
759× 24 array. Then each column will contain A7 ones and 759− A7 zeros, since
puncturing that column must yield the codewords of weight 7 and 8.

Counting the number of ones in the array columnwise gives 24A7 but rowwise one
gets 759× 8. It follows that A7 = 253 and thus that A8 = 506.

In exactly the same way one gets 24A11 = 2576× 12, and thus A11 = A12 = 1288.
Similarly, 24A15 = 759 × 16, and thus A15 = 506 and A16 = 253. From 24A23 =
1× 24 it follows that A23 = 1 (of course).
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3.4.11 That a (90, 278, 5) binary code has to be perfect follows from Theorem 2.1.7 and
the observation

278

{
1 +

(
90

1

)
+

(
90

2

)}
= 290.

The recurrence relation for the weight enumerator A(z) of C is given by

(
90

w

)
= Aw + (w + 1)Aw+1 + (90− w + 1)Aw−1 +

+

(
w + 2

2

)
Aw+2 + w(90− w)Aw +

+

(
90− w + 2

2

)
Aw−2.

Let c be one of the codewords in C. Translate the C over −c. One obtains a new
code with the same parameters (thus also perfect) containing 0. So, the weight
enumerator of this code obviously satisfies A0 = 1, A1 = . . . = A4 = 0. For the
other coefficients we use the recurrence relation with w = 3, 4 and 5.

Substitution of w = 3 in the recurrence relation yields:
(

90
3

)
=
(

5
2

)
A5, and thus

A5 = 11748.

Substitution of w = 4 in the recurrence relation yields:
(

90
4

)
=
(

6
2

)
A6 + 5A5, and

thus A6 = 166430.

Substitution of w = 5 in the recurrence relation yields:
(

90
5

)
=
(

7
2

)
A7 + 6A6 + 5×

85A5, and thus A7 = 18075135
7
.

Since the coefficient Aw in the weight enumerator of a code counts the number of
codewords of weight w this number has to be an integer. From the fact that A7

is not an integer we can conclude that a binary (perfect) (90, 278, 5) code does not
exist.

3.4.12 Consider the Boolean function
∑

1≤i<j≤m aijxixj+
∑

1≤i≤m bixi+c with at least one
of the a′ijs not equal to 0. We first want to demonstrate that a suitable invertible
affine transformation maps this function to one of exactly the same form but with
a12 6= 0.

If a12 = 1 there is nothing to do. If a1j = 1 with j > 2 apply x′2 = xj, x
′
j = x2 and

x′k = xk for k 6= 2, j. If ai2 = 1 with i > 2, interchange x1 and xi in a similar way.
Finally, if a1k = 0 for all k and ak2 = 0 for all k while aij = 1, apply the mapping
that interchanges both 1 and i and 1 and j.

Now
∑

1≤i<j≤m aijxixj +
∑

1≤i≤m bixi + c with a12 = 1 can be rewritten as
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(x1 +
∑

i≥3 a2ixi + b2)(x2 +
∑

j≥3 a1jxj + b1) + (
∑

i≥3 a2ixi + b2)(
∑

j≥3 a1jxj + b1) +∑
3≤i<j≤m aijxixj +

∑
3≤i≤m bixi + c.

This means that the invertible affine transformation

x′1 = x1 +
∑

i≥3 a2ixi + b2,
x′2 = x2 +

∑
j≥3 a1jxi + b1,

x′k = xk, k ≥ 3,

transforms the above function into

x1x2 +
∑

3≤i<j≤m

aijxixj +
∑

3≤i≤m

bixi + c,

where we have left out all primes in the notation.

Note that the product of several invertible affine transformations, one applied one
after another, still is an invertible affine transformation.

If one of the terms aij with 3 ≤ i < j ≤ m is not equal to 1, one can find
in exactly the same way an invertible affine transformation that yields the form
x1x2+x3x4+

∑
4≤i<j≤m aijxixj +

∑
4≤i≤m bixi +c Continuing in this way one arrives

at

x1x2 + · · ·+ x2l−1x2l +
∑

2l+1≤i≤m

bixi + c.

If one of the bi 6= 0, i ≥ 2l + 1, one can apply an invertible affine transformation
that maps the above form into x1x2+· · ·+x2l−1x2l+x2l+1. So the following standard
forms can be found:

1) 0
2) 1
3) x1

4) x1x2 + . . .+ x2l−1x2l, 2l ≤ m,
5) x1x2 + . . .+ x2l−1x2l + 1, , 2l ≤ m,
6) x1x2 + . . .+ x2l−1x2l + x2l+1, , 2l + 1 ≤ m.

It follows from the above that each word in RM(2, 5) can be mapped by an
invertible affine transformation into one of the following words: 0, 1, x1, x1x2,
x1x2 + x3x4, x1x2 + 1, x1x2 + x3x4 + 1, x1x2 + x3 or x1x2 + x3x4 + x5.

Since an invertible affine transformation permutes the coordinates, such a trans-
formation will not affect the weight of words. So, as one can easliy check, these
standard forms give rise to the following weights:
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weight standardforms
0 0
8 x1x2

12 x1x2 + x3x4

16 x1

x1x2 + x3

x1x2 + x3x4 + x5

20 x1x2 + x3x4 + 1
24 x1x2 + 1
32 1

For instance, x1x2 is equal to 1 if and only if x1 = x2 = 1, independent of the
values of x3, x4 and x5, i.e. independent of the eight possible values of (x3, x4, x5).

That RM(2, 5) is a selfdual code follows directly from Theorem 3.3.4. If follows
that the weight enumerator of RM(2, 5) is equal to that of its dual code. There
are only five unknown coefficients: A8, A12, A16, A20 and A24. Comparing the co-
efficients of zi, 0 ≤ 7, in the MacWilliams relations (Theorem 2.3.4) will yield all
these coefficients.

3.4.13 The coefficient a13 is given by the innerproduct of c with any of the eight products
(x2 +u2)(x4 +u4)(x5 +u5). The choice u2 = u4 = u5 = 1 results in the coordinates
with x2 = x4 = x5 = 0, i.e. coordinates 0, 4, 16 and 20. In other words a13 =
c0 + c4 + c16 + c20. Together with the other choices of u2, u4 and u5 one gets the
following equalities.

a13 = c0 + c4 + c16 + c20
a13 = c1 + c5 + c17 + c21
a13 = c2 + c6 + c18 + c22
a13 = c3 + c7 + c19 + c23
a13 = c8 + c12 + c24 + c28
a13 = c9 + c13 + c25 + c29
a13 = c10 + c14 + c26 + c30
a13 = c11 + c15 + c27 + c31

.

Similarly for a3 one finds that it should be equal to each of: c0 + c4, c1 + c5, c2 + c6,
c3 + c7, c8 + c12, c9 + c13, c10 + c14, c11 + c15, c16 + c20, c17 + c21, c18 + c22, c19 + c23
c24 + c28, c25 + c29, c26 + c30, c27 + c31 (the primes in c′i have been left out).

Finally for a∅ one has the 32 equations a∅ = ci, 0 ≤ i ≤ 31 (the primes in c′′i have
been left out).
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C.4 Solutions to Chapter 4

4.7.1 If f and g are q-ary polynomials of degree less than k and u and v are elements
in GF (q), then also uf + vg is a q-ary polynomial of degree degree less than k. So
C is a linear code. That the dimension of C is k follows from the fact that the
only polynomial of degree less than n that is identical to zero on all the non-zero
elements of GF (q) is the polynomial 0. Since there are qk polynomials of degree
less than k, one can conclude that C is a k-dimensional code.

Any non-zero polynomial of degree less than k has at most k − 1 zeros, so each
non-zero vector in C has weight at least n−(k−1). So, C is an [n, k, d ≥ n−k+1]
code. From (2.17) it follows that d = n− k + 1 and that C is an MDS code.

The polynomials xi, 0 ≤ i < k, give rise to the following base of the code C over
GF (q):

(1, αi, . . . , αi(n−1)), 0 ≤ i < k.

Cyclically shifting the i-th vector yields (αi, α2i, . . . , αi(n−1), αin), which can be
written as αi(1, αi, . . . , αi(n−1)). This vector also lies in C and is the image of the
polynomial αixi. It follows that the cyclic shifts of the basis vectors are again in
the code and also generate it, so C is cyclic. To make this more explicit: the cyclic
shift of the codeword defined by the polynomial f(x) is the codeword defined by
the polynomial f(αx), which is of the same degree as f(x) is.

In fact C is the Reed Solomon code.

4.7.2 Let α be a primitive 11-th root of unity in an extension field of GF (3). Then
x11 − 1 = (x − 1)(x − α) . . . (x − α10). Let m1(x) be the minimal polynomial of
α. Then the conjugates of α are α3, α9, α27 = α5 and α15 = α4. Similarly the
conjugates of α−1 = α10 are α8, α2, α6 and α7.

So the factorization of x11 − 1 over GF (3) is given by

x11 − 1 = (x− 1)m1(x)m−1(x),

with

m1(x) = (x− α)(x− α3)(x− α9)(x− α5)(x− α4)

m−1(x) = (x− α10)(x− α8)(x− α2)(x− α6)(x− α7),

both of degree 5.

The smallest extension field of GF (3) that contains a primitive 11-th root of unity
is GF (3m), with m minimal such that 11 divides 3m − 1, so m = 5.

Let ω be a primitive element in GF (35). Then α = ω(35−1)/11 is a primitive 11-th
root of unity in GF (35). So the zeros of m1(x) are ω22, ω66, ω198, ω110, ω88, those of
m−1(x) are ω220, ω176, ω44, ω132, ω154.
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4.7.3 Let α be a primitive, 93-th root of unity in an extension field of GF (2). The
generator polynomial g(x) must have αi, 1 ≤ i ≤ 12, as zeros. Grouping the
conjugates of these zeros in their cyclotomic cosets, one gets:

cyclotomic cosets exponents i of the zeros αi

C1 1, 2, 4, 8, 16, 32, 64, 35, 70, 47
C3 3, 6, 12, 24, 48
C5 5, 10, 20, 40, 80, 67, 41, 82, 71, 49
C7 7, 14, 28, 56, 19, 38, 76, 59, 25, 50
C9 9, 18, 36, 72, 51
C11 11, 22, 44, 88, 83, 73, 53, 13, 26, 52

The dimension of C is 93 minus the number of zeros, so it is 93−4×10−2×5 = 43.

Since g(x) also has α13 and α14 as zeros, the actual minimum distance will be at
least 15 by the BCH bound.

4.7.4 The generator polynomial g(x) of C must have αi, 1 ≤ i ≤ 4, as zeros, where
α is a primitive 15-th root of unity. So, g(x) = m1(x)m3(x), with m1(x) =
(x− α)(x− α2)(x− α4)(x− α8) and m3(x) = (x− α3)(x− α6)(x− α12)(x− α9).

The smallest extension field of GF (2) that contains a primitive 15-th root of unity
is GF (24). If GF (24) is represented as GF (2)[x]/(x4+x+1), one has that m1(x) =
x4 + x+ 1 and m3(x) = x4 + x3 + x2 + x+ 1, so g(x) = 1 + x4 + x6 + x7 + x8.

4.7.5 Since the smallest m for which 33 divides 2m− 1 is 10, the smallest extension field
of GF (2) containing α is GF (210).

The cyclotomic coset C1 containing 1 has as elements 1, 2, 4, 8, 16, −1, −2, −4,
−8, −16. Together with C0 = {0} one has 11 zeros of the generator polynomial
g(x). So the dimension of C is 33− 11 = 22.

The generator polynomial has the five consecutive zeros αi, − 2 ≤ i ≤ 2, so the
BCH bound gives that d ≥ 6.

If d = 7 or more, one gets a contradiction with the Hamming bound (Theorem
2.1.3), since

3∑
i=0

(
33

i

)
= 6018 > 211.

4.7.6 The conjugates of α are α, α2, α4, α8, and those of α3 are α3, α6, α12, α9. So the
generator polynomial g(x) has the four consecutive zeros: α, α2, α3, α4 and thus
the the minimum distance d is at least 5 by the BCH-bound.

Now consider the syndrome s1 = α7 and s3 = α14. We follow Algorithm 4.2.3.
Note that s3 6= s3

1. With a logarithm table of GF (2)[x]/(x4 + x + 1) one can find
that (s3 + s3

1)/s1 = (α14 + α6)/α7 = α.
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The polynomial z2 + α7z + α has the the zeros: α6 and α10. So the most likely
error pattern is

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0.

4.7.7 Consider the coordinate permutation that maps a word (c0, c1, . . . , c62) into
(c′0, c

′
1, . . . , c

′
62) = (c0, c5, c10, . . . , c5×62), where the indices have to be taken modulo

63. Note that this is indeed a coordinate permutation since 5 and 63 are coprime.

Clearly, c(αl) = 0, i.e.
∑62

i=0 ciα
il = 0, can be rewritten as

∑62
i=0 c5iα

5il = 0 or∑62
i=0 c

′
iα

5il = 0 i.e. c′(α5l) = 0. So, c(α) = 0 if and only if c′(α5) = 0 and, for the
same reason, c(α3) = 0 if and only if c′(α15) = 0. We conclude that C1,3 and C5,15

are equivalent codes.

For C3,9 a similar reasoning is not applicable, since i → 3i (mod 63) is not a 1-1
mapping and thus does not yield a coordinate permutation.

That C1,3 is indeed not equivalent to C3,9 follows, for instance, from a dimension
argument. The code C1,3 has redundancy 6+6, while C3,9 has redundancy 6+3,
since the minimal polynomial of α9 has degree 3.

4.7.8 In the notation of the problem, let i(x) = a(x)g(x) = 1− b(x)h(x). Then

a) From i(x) = a(x)g(x) it follows that i(x) is a codeword,
b) Since g(x)h(x) ≡ 0 (mod xn − 1), it follows that

i(x)c(x) ≡ (1 − b(x)h(x))c(x) ≡ c(x) (mod xn − 1) for
each codeword c(x) in C.

c) This follows directly from b).
d) Since i(x) is also a codeword, this follows directly from

b) by taking c(x) = i(x).
e) Let i′(x) also satisfy a) and b). Then i′(x) ≡ i′(x)i(x) ≡

i(x) (mod xn − 1).

4.7.9 Let g(x) denote the greatest common divisor of a(x) and xn − 1 and let C ′ be
the cyclic code of length n with generator polymomial g(x) (note that C ′ is well
defined since g(x) divides xn−1. It suffices to show that C ′ = C (C is the smallest
cyclic code of length n containing a(x)).

By the extended version of Euclid’s Algorithm polynomials u(x) and v(x) exist
such that

u(x)a(x) + v(x)(xn − 1) = g(x).

It follows that g(x) is an element of C and thus that C ′, the code generated by
g(x), is a subset of C. The minimality of C now implies that C ′ = C.
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4.7.10 We follow Algorithm 4.5.8 with G(x) = x6. From S1 = α10, S3 = α22 and S5 = α25

one gets S2 = S2
1 = α20, S4 = S2

2 = α9 and S6 = S2
3 = α13, so

S(x) = α10 + α20x+ α22x2 + α9x3 + α25x4 + α13x5.

The next step is to apply Euclid’s Algorithm 4.5.3 until the degree(si(x)) ≤ 3.
One gets

s0(x) = G(x) = x6,

v0(x) = 0,

s1(x) = S(x) =

= α10 + α20x+ α22x2 + α9x3 + α25x4 + α13x5,

v1(x) = 1,

q2(x) = α30 + α18x,

s2(x) = α9 + α4x+ α20x2 + α26x3 + α22x4,

v2(x) = α30 + α18x,

q3(x) = α15 + α22x,

s3(x) = α23 + α27x+ α30x2 + α20x3,

v3(x) = α13 + α13x+ α9x2,

q4(x) = α2 + α2x,

s4(x) = α18 + α11x2

v4(x) = α8 + α18x+ α21x2 + α11x3.

We next have to find the zeros of v4(x). Trying out the successive elements in
GF (25) one finds α8, α22 and α29.

The reciprocals of these zeros give the error locations: 2, 9 and 23.
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4.7.11 First compute the syndrome of r. One obtains S1 = α3, S2 = α4, S3 = α4, S4 = 0.

We follow Algorithm 4.5.8 with G(x) = x4 and S(x) = α3 + α4x+ α4x2. We get:

s0(x) = G(x) = x4,

v0(x) = 0,

s1(x) = S(x) = α3 + α4x+ α4x2

v1(x) = 1,

q2(x) = α5 + α3x+ α3x2,

s2(x) = α+ x

v2(x) = α5 + α3x+ α3x2.

We conclude that σ(x) = v2(x)/α
3 = x2 +x+α2 and ω(x) = s2(x)/α

3 = α5 +α4x.
The zeros of σ(x) are α4 and α5, so the error values follow from substituting these
values in ω(x). We get ω(α4) = α6 and ω(α5) = α3. The error locations are given
by the reciprocals of the zeros of σ(x), so they are α2 and α3. We find the following
error pattern:

e = (0, 0, α3, α6, 0, 0, 0).

Subtracting e from r gives the codeword

c = (α3, α, α, 1, 0, α3, 1).

4.7.12 In Example 4.6.2 one has s = t = 1 and thus g = 0. It follows from Corollary 4.6.5
that for m ≥ 0 both the space L(m) and the AG-code C(P ,m) have dimension
m+ 1.

In Example 4.6.3 one has s = 3 and t = 2. Hence g = (3 − 1)(2 − 1)/2 = 1. It
follows from Corollary 4.6.5 that for m > 0 both the space L(m) and the AG-code
C(P ,m) have dimension m.
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4.7.13 By Corollary 4.6.5, g = 6 and for m > 10 the code C(P ,m) has dimension m−5.

For m = 10 we find solutions xiyj to Equation (4.42) for (i, j) = (0, 0), (0, 1), (0, 2),
(1, 0), (1, 1) (2, 0). It follows from (4.42) that 1 ∈ L(0), x5 ∈ L(5), x10 ∈ L(10),
y ∈ L(4), x5y ∈ L(9) and y2 ∈ L(8). So, for 0 ≤ m ≤ 10, we get the following list
of dimensions for L(m):

m 0 1 2 3 4 5 6 7 8 9 10
dim L(m) 1 1 1 1 2 3 3 3 4 5 6

4.7.14 We have the following functions φu(x, y) = xiyj

u 1 2 3 4 5 6
(i, j) (0, 0) (0, 1) (0, 2) (1, 0) (0, 3) (1, 1)

u 7 8 9 10 11
(i, j) (0, 4) (1, 2) (2, 0) (1, 3) (2, 1)

1. The pairs (u, v) in T for which (4.53) holds but not (4.54) are given by
(1, 2), (2, 1) and (3, 3).

2. The pairs (u, v) with Tu,v of degree 12 are given by (1, 11), (2, 9), (3, 7), (4, 6),
(5, 5), (6, 4), (7, 3), (9, 2), (11, 1).

The pair (1,11) tells us that Si,j can be computed with (i, j) = (0, 0) + (2, 1).
The other pairs result in the same S2,1 as we shall see in (d).

3. Of the nine (= 11 + 2− 2× 2) pairs above, six lie in the same row or column
as one of the three known discrepancies. What remains are the pairs: (4, 6),
(5, 5), (6, 4). Under the assumption that these three candidates are correct,
one finds T4,6 = T6,4 = 1 and T5,5 = 0.

4. By (4.50) we get:
i) φ4 · φ6 = x1y0 · x1y1 = x2y1, so T4,6 = 1 implies S2,1 = 1.
ii) φ6 · φ6 = x1y1 · x1y0 = x2y1, so T6,4 = 1 implies S2,1 = 1.
iii) φ5 · φ5 = x0y3 · x0y3 = x0y6 = (1 + x + x2)y, so T6,4 = 1 implies S0,1 +
S1,1 + S2,1 = 0. Since S0,1 = T1,2 = 1 and S1,1 = T1,6 = 1, we get as estimate
from T5,5 = 0 that S2,1 = 0.

The majority decision yields S2,1 = 1.

5. x0y0 · x2y1 = x2y1, so T1,11 = T11,1 = S2,1 = 1.
x0y1 · x2y0 = x2y1, so T2,9 = T9,2 = S2,1 = 1.
x0y2 · x1y2 = x2y1, so T3,8 = T8,3 = S2,1 = 1.
x0y2 · x0y4 = x0y6 = (1 + x + x2)y, so T3,7 = T7,3 = S0,1 + S1,1 + S2,1 =
1 + 1 + 1 = 1.
x1y0 · x1y1 = x2y1, so T4,6 = T6,4 = S2,1 = 1.
x0y3 ·x0y3 = x0y6 = (1+x+x2)y, so T5,5 = S0,1 +S1,1 +S2,1 = 1+1+1 = 1.
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4.7.15 Taking the points Pj, 1 ≤ j ≤ 8, in P in the same order as in Example 4.6.3, the
code C(P ,m), 1 ≤ m ≤ 7, in Example 4.6.3 is generated by the first m rows of

G =



1 1 1 1 1 1 1 1
0 0 1 1 α α α2 α2

α α2 0 1 0 1 0 1
0 0 1 1 α2 α2 α α
0 0 0 1 0 α 0 α2

α2 α 0 1 0 1 0 1
0 0 0 1 0 α2 0 α
0 0 0 1 0 α 0 α2



φ1 = 1
φ2 = y
φ3 = x
φ4 = y2

φ5 = xy
φ6 = x2

φ7 = xy2

φ8 = x2y

.

It follows from 1 + α + α2 = 0 that each of the eight rows of G is orthogonal to
the top row of G and thus that

∑8
j=1 φi(Pj) = 0 for 1 ≤ i ≤ 8.

To check that the second row of G is orthogonal to the first 6 rows of G, it suffices
to observe that φ2φ3 = φ5, φ2φ4 = y3 = 1 + x+ x2 = φ1 + φ3 + φ6, φ2φ5 = φ7 and
φ2φ6 = φ8 and for all these functions we already know that

∑8
j=1 φi(Pj) = 0.

To check that the third row of G is orthogonal to the first 5 rows of G, we observe
that φ3φ4 = φ7 and φ3φ5 = φ8 and again for these functions we already know that∑8

j=1 φi(Pj) = 0.

The above shows that the code generated by the first 8 −m rows of G is in fact
the dual code of the code generated by the first m rows of G, i.e. C(P , 8−m) is
equal to C∗(P ,m).

C.5 Solutions to Chapter 5

5.6.1 A burst of length 9 affects at most three consecutive 4-tuples of coordinates. Since
16 = 24, each symbol in the Reed-Solomon code represents a binary 4-tuple. It
follows that e needs to be 3.

A burst of length 10 can affect four consecutive 4-tuples of coordinates (starting
at the last coordinate of the first 4-tuple and ending at the first coordinate of the
fourth 4-tuple), but never more. So e needs to be 4.

5.6.2 By Theorem 5.3.3, the binary Fire code generated by (x5 − 1)(1 + x + x3) can
correct bursts of length up to 3. By Theorem 5.2.1, interleaving this code at depth
5 creates a code that can correct bursts of length up to 3× 5 = 15.

The length of this code is 5× 35 = 175, its dimension is 5× (35− (3 + 5)) = 135.

5.6.3 The length of the binary Fire code generated by g(x) = (x7 − 1)(x4 + x + 1) is
lcm(7, 24 − 1) = 105 by Lemma 5.3.2. This code can correct bursts of length up
to 4 by Theorem 5.3.3.
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Write the received word r(x) as c(x)+xiB(x), where c(x) is a codeword and xiB(x)
the burst. The syndrome of r(x) can be found by reducing r(x) (mod g(x)) further
modulo x7 − 1 and modulo x4 + x+ 1. One gets

s1(x) ≡ r(x) ≡ x+ x2 + x4 + x5 + x8 ≡
≡ 2 + x4 + x5 (mod x7 − 1),

s2(x) ≡ r(x) ≡ x+ x2 + x4 + x5 + x8 ≡
≡ x+ x2 (mod x4 + x+ 1).

The gap of length at least 3 in s1(x) is at positions x6, 1, x modulo x7 − 1, so the
burst starts at coordinate i′ = 2 modulo 7 and has pattern B(x) = 1 + x2 + x3.

To find i one has to solve

x2+j7(1 + x2 + x3) ≡ s2(x) ≡ x+ x2 (mod x4 + x+ 1).

From the logarithm table of GF (2)[x]/(1 + x + x4), one gets 1 + x2 + x3 ≡ x13

(mod 1 + x+ x4) and x+ x2 ≡ x5 (mod 1 + x+ x4). So, one needs to solve

2 + j7 + 13 ≡ 5 (mod 15).

The solution j = 5 gives the burst x2+5×7(1 + x2 + x3) = x37 + x39 + x40.

The redundancy of this Fire code is 7+4=11. The Reiger bound (Theorem 5.1.4)
yields that the redundancy is at least 2× b = 8.

5.6.4 The coordinates in A(7, 10) are ordered in the following way.

0 7 14 21 28 35 42 49 56 63
64 1 8 15 22 29 36 43 50 57
58 65 2 9 16 23 30 37 44 51
52 59 66 3 10 17 24 31 38 45
46 53 60 67 4 11 18 25 32 39
40 47 54 61 68 5 12 19 26 33
34 41 48 55 62 69 6 13 20 27

Two bursts of length at most 6 that have the same syndrome (see the proof of
Lemma 5.4.2) are for example one that has its ones at coordinates 0 and 5, while
the other has its ones at coordinates 35 and 40.
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5.6.5 We follow Algorithm 5.4.4. So first we compute the horizontal and vertical syn-
dromes h and v.

R =

1 0 1 1 1 0 1 1 1 1
1 1 0 0 0 1 1 0 0 0
0 1 1 0 0 1 1 0 1 1
1 0 0 1 1 1 0 1 1 0
0 0 1 1 1 1 0 1 0 1
1 0 1 1 0 0 0 0 0 1
0 0 0 0 1 0 1 1 1

The one-coordinates in h are at i1 = 1, i2 = 3, i3 = 5 and i4 = 6.

In v a gap of size 4 occurs at coordinates 1, 2, 3 and 4. So, one gets j1 = 5, j2 = 7,
j3 = 8 and j4 = 9.

We find the burst with ones at positions (il, jl), 1 ≤ l ≤ 4, so at: (1,5), (3,7),
(4,8) and (5,9). This is the burst of length 5 starting at position (4,8) with burst
pattern 11101.

5.6.6 First compute the syndrome se = r(x) (mod 1 + x + x2) and sp = r(x) (mod 1 +
x+ x4). One gets se = x and sp = 1 + x3.

It follows from se = x that there are three bursts of degree at most 2 with se = x,
namely b1(x) = 1x1+3l, b2(x) = (1 + x)x3l+2 and b3(x) = (1 + x2)x3l.

Now, 1 + x3 ≡ x14 (mod 1 + x+ x4), 1 + x ≡ x4 (mod 1 + x+ x4). and 1 + x2 ≡ x8

(mod 1 + x+ x4).

The equation

b1(x) ≡ 1x1+3l ≡ x14 (mod 1 + x+ x4)

can be rewritten as

1 + 3l ≡ 14 (mod 15),

which has no solution.

The equation

b2(x) ≡ (1 + x)x3l+2 ≡ x4x3l+2 ≡ x14 (mod 1 + x+ x4)

can be rewritten as

6 + 3l ≡ 14 (mod 15),
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which has no solution.

The equation

b3(x) ≡ (1 + x2)x3l ≡ x8x3l ≡ x14 (mod 1 + x+ x4)

can be rewritten as

8 + 3l ≡ 14 (mod 15),

which has l ≡ 2 (mod 5) as solution.

We conclude that the burst of length (1 + x2)x6 has occurred and that the trans-
mitted codeword is r(x)− (1 + x2)x6 = 1 + x2 + x4 + x8 + x10 + x13 + x14.

5.6.7 Since e(x) = 1 + x3 has period 3 = 22− 1 it follows that the generator polynomial
g(x) must have the form g(x) = (1 + x3)p(x), with p(x) is a primitive polynomial
of even degree m.

Possible burst patterns of length at most 4, that are not the product of smaller
degree patterns are: 1, 1 + x, 1 + x+ x2, 1 + x+ x3 and 1 + x2 + x3.

Define a, b, c and d by

1 + x ≡ xa (mod p(x)),
1 + x+ x2 ≡ xb (mod p(x)),
1 + x+ x3 ≡ xc (mod p(x)),

1 + x2 + x3 ≡ xd (mod p(x)).

Consider the burst patterns B1(x) = 1 and B2(x) = 1 + x + x3. Clearly,
B1(x) ≡ xlB2(x) (mod 1 + x3), i.e. 1 ≡ xl(1 + x + x3) (mod 1 + x3) if and only
if l ≡ 2 (mod 3). From the condition B1(x) 6≡ xlB2(x) (mod p(x)), i.e. 1 6≡ xlxc

(mod p(x)) for all l ≡ 2 (mod 3) it now follows that 0 6≡ 2 + c (mod 3), i.e. c 6≡ 2
(mod 3).

Similarly, the burst patterns B1(x) = 1 and B2(x) = 1+x2+x3 yield the condition
d 6≡ 2 (mod 3).

The burst patterns B1(x) = 1+x and B2(x) = 1+x2 = (1+x)2 yield the condition
a 6≡ 1 + 2a (mod 3) and thus a 6≡ 2 (mod 3).

The burst patterns B1(x) = 1+x+x3 and B2(x) = 1+x2 +x3 yield the condition
c 6≡ 2 + d (mod 3) and thus c+ 2d 6≡ 2 (mod 3).

It just so turns out that none of the other burst patterns give rise to further
relations, so that we have the following AES conditions in the a, c and d defined
above (and not in b):
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a 6≡ 2 (mod 3),

c 6≡ 1 (mod 3),

d 6≡ 2 (mod 3),

c+ 2d 6≡ 2 (mod 3),

Modulo 3 there are four solutions: (a, c, d) ≡ (0,0,0), (1,0,0), (0,2,1) and (1,2,1).

C.6 Solutions to Chapter 6

6.6.1 The received sequence 11, 11, 00, 11, 10, 01, 00, 11, 10 gives rise to distances in
Figure 6.3 that can be found Figure C.1.
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Figure C.1: Distances to sequence 11, 11, 00, 11, 10, 01, 00, 11, 10

In Figure C.2 the lowest weight path to every state can be found.

So, the path closest to the received sequence is

11 10 00 01 10 01 00 10 11

which is at distance 4. The corresponding information sequence is
1 0 1 1 1 0 1 0 0.
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Figure C.2: Lowest weight paths

6.6.2 Elementary row operations yield the matrix

G =

 1 1 + x 1 + x2 1 1 + x+ x2

0 x+ x2 1 + x2 1 + x 1 + x
0 0 1 + x2 0 1 + x2

 .
Elementary column operations yield the matrix

G =

 1 0 0 0 0
0 x+ x2 1 + x2 1 + x 1 + x
0 0 1 + x2 0 1 + x2

 .
Interchanging columns 2 and 4 and further column operations yield

G =

 1 0 0 0 0
0 1 + x 0 0 0
0 0 1 + x2 0 1 + x2

 .
Subtracting column 3 from column 5 yields

G =

 1 0 0 0 0
0 1 + x 0 0 0
0 0 1 + x2 0 0

 ,
from which the invariant factors 1, 1 + x and 1 + x2 can be read.

6.6.3 The input sequence 1 + x + x2 + x3 + · · · = 1
1+x

of infinite weight results in the
output (1, 1 + x) of weight 3.

172



C.6. SOLUTIONS TO CHAPTER 6

01 11

00 10

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

1,11
>

0,11
<

1,01∨0,01∧

1,00

<

0,00
>

0,10

1,10

Figure C.3: State diagram of the code in Problem 6.6.3
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The state diagram of this code can be found in Figure C.3.

The corresponding labeled diagram of this code can be found in Figure C.4.

The four fundamental path enumerators satisfy the followoing relations:

A10(x, y, z) = yzA01(x, y, z) + xyzA11(x, y, z),

A00(x, y, z) = xy2zA10(x, y, z),

A01(x, y, z) = yz + xyzA10(x, y, z),

A11(x, y, z) = y2zA01(x, y, z) + xzA11(x, y, z).

This gives rise to the following matrix equation:


1 0 −xy2z 0
0 1 −xyz 0
0 −yz 1 −xyz
0 −y2z 0 1− xz



A00(x, y, z)
A01(x, y, z)
A10(x, y, z)
A11(x, y, z)

 =


0
yz
0
0

 .

With Kramer’s Rule it is now simple to determine A00(x, y, z).

A00(x, y, z) =

∣∣∣∣∣∣∣∣∣
0 0 −xy2z 0
yz 1 −xyz 0
0 −yz 1 −xyz
0 −y2z 0 1− xz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 0 −xy2z 0
0 1 −xyz 0
0 −yz 1 −xyz
0 −y2z 0 1− xz

∣∣∣∣∣∣∣∣∣

,

and thus

A00(x, y, z) =
xy4z3(1− xz − xy2z)

1− xz(1 + y2z + xy4z2 − xy2z2)
.

From 1 − xz in the denominator one can see that in the expansion of A(x, y, z)
terms xi+aybzi+c occur for all i, corresponding to paths with i + a input ones out
of i+ c inputs, with output weight just b. This reflects the catastrophic character
of this convolutional code.
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Figure C.5: Trellis of code in Problem 6.6.4

6.6.4 The trellis for the (2,1)-convolutional code C generated by

G =
(

1 + x+ x3 1 + x+ x2 + x3
)

is given in Figure C.5.

The free distance of C is the minimum weight of the non-trivial paths from state
000 to state 000. The input sequence 11000 starting in state 000 gives rise to the
path that also ends in state 000 and has output 11 00 10 10 11 of weight 6. In this
small case one can easily check that six is indeed the minimum.

6.6.5 Omitting the subscripts, the received sequence

· · · , a, a, d, c, d, a, a, · · ·

corresponds, according to Figure 6.9, to to the binary sequence

· · · 00 00 11 10 11 00 00 · · · .

This is the output sequence of the (2, 1)-convolutional code of Figure 6.1 when the
input sequence is:

· · · 0 0 1 0 0 0 0 · · · .
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Putting the binary image of the subscripts in front of these bits results in the input
sequence:

· · · 000 000 011 110 100 000 000 · · · .

C.7 Solutions to Appendix A

A.6.1 For n = 3 one has gcd(F3, F2) = gcd(2, 1). Since 2 = 2× 1 + 0, the calculation of
this gcd by Euclid’s Algorithm involves 1 = n− 2 steps.

For n > 3 the assertion follows with an induction argument. Indeed, the recurrence
relation Fn = 1 × Fn−1 + Fn−2 implies that the first step in Euclid’s Algorithm
applied to the pair (Fn, Fn−1) yields the pair (Fn−1, Fn−2).

A.6.2 Note that f is the largest root of x2 = x + 1, the characteristic equation for the
recurrence relation Fn = Fn−1 + Fn−2.

The statement can easily be verified for small values of b. We proceed with induc-
tion on b. Write b = qa+ r, 0 ≤ r < a. We distinguish two cases.

Case 1: a ≤ b/f.

By the induction hypothesis Euclid’s Algorithm computes gcd(a, r) using at most
logf (a) iterations. So for the computation of gcd(b, a) at most

1 + logf (a) = logf (f · a) ≤ logf (b)

iterations are needed.

Case 2: b/f < a ≤ b.

It follows that q = 1, b = a + r and 0 ≤ r = b − a < b(1 − f−1) = b/f 2. Writing
a = q′r + r′, 0 ≤ r′ < r, it follows from the induction hypothesis that Euclid’s
Algorithm involves at most logf (r) iterations to compute gcd(r, r′). So for gcd(a, b)
at most

2 + logf (r) = logf (f
2.r) < logf (b)

iterations are needed.

An explicit formula for Fn is given by

Fn = 1√
5
·
(

1+
√

5
2

)n
− 1√

5
·
(

1−
√

5
2

)n
.

A.6.3 For k = 2 the first assertion is equivalent to Corollary A.1.4. To give a proof by
induction, one has to apply Corollary A.1.4 again to a = a1 and b = a2 . . . ak. It
follows that either p divides a1 or one of the factors ai, 2 ≤ i ≤ k.
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That any integer can be written as product of powers of primes follows more or
less directly from the definition of a number being prime (either n is a prime, or it
is divisible by a smaller prime p; now continue with n/p). The uniqueness of this
factorization again follows with an induction argument from the first part of the
problem.

Equations (A.9) and (A.10) follow directly from equation (A.8) and in turn imply
(A.11).

A.6.4 Take as set S the set of integers Z and as subset U of S × S the set of points
{(i, i+ lm) | i ∈ Z and l ∈ Z}.

A.6.5 One first has to check that equation (A.23) yields a proper definition of an addition
on Zm, in other words that the result of the addition is independent of the choice
of a in < a > and b in < b > . Indeed, if a′ is in < a > and b′ in < b >, then
a′ = a+ im and b′ = b+ jm for some integers i and j, so a′ + b′ = a+ b+(i+ j)m,
which is element of the same congruence class < a+ b > that contains a+ b.

Associativity directly follows from < a > +(< b > + < c >) = < a > + <
b + c >=< a + b + c >=< a + b > + < c >= (< a > + < b >)+ < c >,
where the associativity in Z has been used. Commutivity follows similarly from
the commutivity in Z.
The unit-element of course is < 0 >, since < a > + < 0 >= < a > . Similarly the
additive inverse of < a > is given by < −a > .

A.6.6 Suppose that (H1), (H2), and (H3) hold and let g and h be both elements in H.
By (H3) the element h−1 is in H and by (H1) also the product gh−1 is in H. This
proves (H).

Conversely, assume that only (H1) and (H) hold. Apply (H) with h = g to establish
that the inverse e of G is in fact an element of H (so (H2) holds). Apply (H) with
g = e to find that the inverse of an element of H also lies in H (so (H3) holds).

A.6.7 The nontrivial subgroups of (Z15,+) have orders 3 or 5 and consists of the classes
represented by {0, 5, 10} respectively {0, 3, 6, 9, 12}.
The nontrivial subgroups of (Z∗

17,×) have orders 2, 4 or 8 and consists of the classes
represented by {1, 16}, respectively {1, 4, 13, 16} and {1, 2, 4, 8, 9, 13, 15, 16}.
Since 3 generates Z∗

17 (it is a primitive element of GF (17)), the multiplicative
order of the various elements in Z∗

17 follows from Lemma A.3.12 and is given by

element 1 2 3 4 5 6 7 8
order 1 8 16 4 16 16 16 8

element 9 10 11 12 13 14 15 16
order 8 16 16 16 4 16 8 2
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A.6.8 One has to check properties (E1), (E2) and (E3) in Definition A.2.1.

(E1) s ∼ s (reflexivity) translates by (A.25) into ss−1 ∈ H, which is true since
ss−1 = e (and (H2) holds).

(E2) (s ∼ t) ⇒ (t ∼ s) (symmetry) translates into st−1 ∈ H ⇒ ts−1 ∈ H. This
implication holds since the inverse of any element in H must also lie in H
(see (H3)) and ts−1 is the inverse of st−1, as can be checked directly.

(E3) (s ∼ t ∧ t ∼ u)⇒ (s ∼ u) (transitivity) is equivalent to (st−1 ∈ H ∧ tu−1 ∈
H)⇒ (su−1 ∈ H) and this follows from su−1 = (st−1)(tu−1) (and (H1)).

To show the second assertion, note that b is in the same class as a if and only if
b ∼ a, i.e. iff ba−1 ∈ H, i.e. iff b ∈ Ha = {ha | h ∈ H}.

A.6.9 To prove that the set of multiples of 1 + x3 form a subring of F2[x] and is even
an ideal in F2[x] is completely analogous to showing that mZ is an ideal in Z. We
shall only prove property (I) in Definition A.3.8.

Let i(x) ∈ (1+x3) and r(x) ∈ F2[x]. Then i(x) = a(x)(x3+1) for some polynomial
a(x). It follows that i(x)r(x) = a(x)(x3 + 1)r(x) = (a(x)r(x))(x3 + 1) is also in
(1 + x3).

From the factorization 1+x3 = (1+x)(1+x+x2) one can deduce the zero-divisors
< 1+x > and < 1+x+x2 > . Indeed, < 1+x >< 1+x+x2 >=< 1+x3 >=< 0 >
in the residue class ring (F2[x]/(1 + x3),+,×).

A.6.10 From (1 + x2 + x4)(1 +x+ x3) = 1 + x+ x2 + x4 + x7 = x2(1 +x2 + x5) + (1 +x)
it follows that

(1 + x2 + x4)(1 + x+ x3) ≡ 1 + x (mod 1 + x2 + x5).

A.6.11 Of the four binary polynomials of degree 2, three are divisible by the first degree
irreducible polynomials x or x + 1, namely x2, x(x + 1), and (x + 1)2. So I2(2) =
4− 3 = 1. The only binary, irreducible polynomial of degree 2 is x2 + x+ 1.

Of the eight binary polynomials of degree 3, four are the product of first degree
polynomials namely xi(x+ 1)3−i, 0 ≤ i ≤ 3. Further two of them are the product
of the only irreducible polynomial of degree 2 and one of the two first degree
polynomials (namely x(x2 + x+ 1) and (x+ 1)(x2 + x+ 1)). So, I2(3) = 8− 4 = 2
(these two irreducible polynomials of degree 3 are x3 + x2 + 1 and x3 + x+ 1).

Of the sixteen binary polynomials of degree 4, five are the product of first degree
polynomials, three of them are the product of the only irreducible polynomial of
degree 2, and two first degree polynomials, one is the product of two irreducible
polynomials of degree 2 and two times two of them are the product of a third
degree, irreducible polynomial with a first degree polynomial. So I2(4) = 16− 5−
3− 1− 4 = 3 (these are x4 + x3 + 1, x4 + x+ 1 and x4 + x3 + x2 + x+ 1).
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To check (A.38), observe that indeed I2(2) = 1
2
(22−21) = 1, I2(3) = 1

3
(23−21) = 2

and I2(4) = 1
4
(24 − 22 + 0 · 21) = 3.

A.6.12 When applying Euclid’s Algorithm (Algorithm A.1.3) to 1+x+x3 and 1+x2+x5

to find the multiplicative inverse of 1 + x + x3 modulo 1 + x2 + x5 one does not
need to evaluate the vn-sequence. One gets the following iterations:

s0(x) = x5 + x2 + 1, u0(x) = 0,

s1(x) = x3 + x+ 1, u1(x) = 1,

q2(x) = x2 + 1, s2(x) = x, u2(x) = x2 + 1,

q3(x) = x2 + 1, s3(x) = 1, u3(x) = x4,

q4(x) = x, s4(x) = 0,

Now that s4(x) = 0 and s3(x) = 1 one has by (A.7) that the gcd of 1 + x+ x3 and
1 + x2 + x5 is indeed 1 and that

x4(x3 + x+ 1) ≡ u3(x)(x
3 + x+ 1) ≡ 1 (mod x5 + x2 + 1).

So, the multiplicative inverse of 1 + x+ x3 (mod 1 + x2 + x5) is given by x4.

A.6.13 By computing the successive powers of x modulo 1 + x + x2 + x3 + x4 one gets
1, x, x2, x3, x4 and then x5 ≡ 1 (mod 1 + x+ x2 + x3 + x4), so x has order 5.

On the other hand, (x2 + x3)2 ≡ 1 + x2 + x3 (mod 1 + x + x2 + x3 + x4), and
(x2 + x3)3 ≡ 1 (mod 1 + x+ x2 + x3 + x4), so x2 + x3 has order 3.

The product is x(x2 +x3) ≡ 1+x+x2 (mod 1+x+x2 +x3 +x4). It clearly has an
order dividing 3× 5 = 15. On the other hand the order must be a multiple of both
3 and 5, so it is equal to 15. (Indeed, if the product of two elements has order k
and also one of the elements has order k then so will the other element have an
order dividing k.)

A.6.14 The log table of GF (3)[x]/(2 + 2x+ x2) is given by

1 x
0 0 0
1 1 0
x1 0 1
x2 1 1
x3 1 2
x4 2 0
x5 0 2
x6 2 2
x7 2 1
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A.6.15 The minimal polynomial of αi, i.e. mi(x), has as zeroes all the conjugates of αi.
Since α has order 63, one gets

m1(x) has zeroes α1, α2, α4, α8, α16, α32;

m3(x) has zeroes α3, α6, α12, α24, α48, α96 = α33;

m9(x) has zeroes α9, α18, α36.

A.6.16 The multiplicative order of 3 modulo 11 is 5, since 35 ≡ 1 (mod 11) and no
smaller positive power of 3 has this property. It follows that α, a primitive 11-th
root of unity in an extension field of GF (3), has the 5 conjugates: α, α3, α9, α27 =
α5, α15 = α4.

The minimal polynomial of α is given by

(x− α)(x− α3)(x− α9)(x− α5)(x− α4).

and has degree 5.

A.6.17 By Corollary A.5.26, the field GF (625) = GF (54) contains as subfields GF (5m)
with m|4, so GF (5) and GF (52).

The (ground)field GF (5) contains as elements the solutions of x5 = x, so 0 and
the fourth roots of unity ωi, 0 ≤ i ≤ 3, with ω = α(54−1)/(5−1) = α156.

The subfield GF (52) contains as elements the solutions of x25 = x, so 0 and the
24-th roots of unity βi, 0 ≤ i ≤ 23, with β = α(54−1)/(52−1) = α26.

A.6.18 Let α be a primitive 17-th root of unity. Its conjugates are

α, α2, α4, α8, α16, α15, α13, α9.

It follows that m1(x), the minimal polynomial of α, has degree 8.

The minimal polynomial m3(x) of α3 has zeroes

α3, α6, α12, α7, α14, α11, α5, α10.

We conclude that the two different minimal polynomials of primitive 17-th roots
of unity are m1(x) and m3(x). Of course

x17 − 1 = (x− 1)m1(x)m3(x).

From

x8m1(x
−1) = x8∏7

i=0(x
−1 − α2i

) =
∏7

i=0(1− α2i
x)

= α1+2+4+8+16+15+13+9∏7
i=0(α

−2i − x)

=
∏7

i=0(x− α−2i
) =

∏7
i=0(x− α2i

) = m1(x).
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It follows that m1(x) is its own reciprocal. The same holds for m3(x).

So, we can write m1(x) and m3(x) as follows:

m1(x) = 1 + ax+ bx2 + cx3 + dx4 + cx5 + bx6 + ax7 + x8,

m3(x) = 1 + sx+ tx2 + ux3 + vx4 + ux5 + tx6 + sx7 + x8.

Since m1(x)m3(x) = (x17−1)/(x−1) = 1+x+x2 + . . .+x16, we get the following
equations:

(x): a+ s = 1,
(x2): t+ as+ b = 1,
(x3): u+ at+ bs+ c = 1,
(x4): v + au+ bt+ cs+ d = 1,
(x5): u+ av + bu+ ct+ ds+ c = 1,
(x6): t+ au+ bv + cu+ dt+ cs+ b = 1,
(x7): s+ at+ bu+ cv + du+ ct+ bs+ a = 1,
(x8): dv = 1,

From (x8) we conclude that d = v = 1. Now, without loss of generality, (x) yields
a = 1 and s = 0 (otherwise, interchange the role of m1(x) and m3(x), i.e. take α3

as primitive 17-th root of unity).

Substituting these values in (x2) yields t + b = 1 and thus tb = 0. Equation (x4)
now reduces to u = 1 and (x3) to t = c. Next, (x5) yields (since tc = cc = c) b = 1.
Finally, (x2) gives t = 0 and (x3) gives t = c.

Summarizing, one has obtained

m1(x) = 1 + x+ x2 + x4 + x6 + x7 + x8,

m3(x) = 1 + x3 + x4 + x5 + x8.

A.6.19 We use the same numbering as in the problem.

1. It follows from Corollary A.5.13 and Corollary A.5.4 that

(Tr(x))p = (x+ xp + xp2
+ · · ·+ xpm−2

+ xpm−1
)p =

= (xp + xp2
+ xp3

+ · · ·+ xpm−1
+ x) = Tr(x).

Theorem A.5.14 now implies that Tr(x) ∈ GF (p) for all x ∈ GF (pm).

2. Let x and y be elements in GF (q) and a and b in GF (p). Then, by Corollary
A.5.13 and Theorem A.5.14,

Tr(ax+ by) =

= (ax+ by) + (ax+ by)p + · · ·+ (ax+ by)pm−1
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= (ax+ by) + (apxp + bpyp) + · · ·+ (apm−1
xpm−1

+

+bp
m−1

ypm−1
)

= (ax+ by) + (axp + byp) + · · ·+ (axpm−1
+ bypm−1

)

= a(x+ xp + · · ·+ xpm−1
) + b(y + yp + · · ·+ ypm−1

)

= aTr(x) + bTr(y).

This proves the linearity of the trace mapping.

3. Since Tr(x) is a linear mapping fromGF (pm) toGF (p), it either is the all-zero
mapping or it takes on every value in GF (p) equally often. However, Tr(x)
is a polynomial of degree pm−1, so it has at most pm−1 zeroes by Theorem
A.4.14. Consequently, Tr(x) is not identical to zero and thus it takes on every
value in GF (p) equally often.
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[28] Tsfasman, M.A. and S.G. Vlǎduţ, Algebraic-geometric codes, Kluwer Academic Pub-
lishers, Dordrecht, 1991.

184



BIBLIOGRAPHY

[29] Vanstone, S.A. and P.C. van Oorschot, An introduction to error correcting codes
with applications, Kluwer Academic Publishers, Boston MA, 1989.

[30] Welsh, D., Codes and cryptography, Clarendon Press, Oxford, Great. Britt., 1988.

185



Index

Abramson bound, 105
AES-conditions, 121
affine line, 83
AG code, 82
AG-code, 82
algebraic curve, 82
algebraic-geometry code, 82
algorithm

Euclid’s, 146
array code, 112
associative, 152
automorphism, 48

b-burst-correcting code, 103
bandpass Gaussian channel, 138
basic algorithm, 96
basis, 168
BCH bound, 66
BCH code, 66
binary symmetric channel, 2
block code, 6, 11
bounds

Abramson, 105
BCH, 66
Gilbert-Varshamov, 15
Griesmer, 39
Hamming, 13
Reiger, 104
Singleton, 15
sphere packing, 14

BSC, 2
burst, 3, 103
burst pattern, 103
burst start, 103
burst-channel, 3
burst-correcting code, 103

candidate, 90
capacity, 8
catastrophic, 128
channel, 2

bandpass Gaussian, 138
binary symmetric, 2
BSC, 2
burst, 3
error and erasure, 3
Gaussian, 3
q-ary symmetric, 3

character, 23
characteristic, 166
characteristic vector, 45
class

congruence, 151
equivalence, 151

codes
AG, 82
algebraic-geometry, 82
array, 112
BCH, 66
block, 6, 11
burst-correcting, 103
concatenated, 40
convolutional, 6, 125
cyclic, 55
cyclic b-burst-correcting, 105
dual, 19
equivalent, 14
even weight, 17
extended, 37
Fire, 108
geometric Goppa, 82
Golay, binary, 69

186



INDEX

Golay, ternary, 70
Goppa, 72
Hamming, 41
inner, 40
linear, 16
linear unequal error protection, 28
LUEP, 28
maximum distance separable, 15
MDS, 15
narrow-s ense BCH, 66
optimum, cyclic, b-burst-correcting,

105
outer, 40
perfect, 13
primitive BCH, 66
projective, 41
punctured, 38
Reed-Muller, 45
Reed-Solomon, 68
repetition, 14
residual, 38
RM, 45
self-dual, 19
self-orthogonal, 19
shortened, 38
Simplex, 43
trivial, 12

codeword, 6, 11, 125
coefficient, 159
communication system, 5
commutative, 152
commutative field, 156
commutative group, 153
commutative ring, 155
complete, 5
concatenated code, 40
congruence class, 151
congruence relation, 149
congruent, 149
conjugate, 61, 171
constellation, 138
constraint length, 125
convolutional code, 6, 125

correct candidate, 90
coset, 20
coset leader, 20
covering radius, 13
cyclic, 55
cyclic b-burst-correcting code, 105
cyclic burst, 105
cyclic group, 156
cyclotomic coset, 61

decoder, 5
decoding algorithms

algebraic geometry code, 93
array, 116
BCH, 74
BCH, binary, 80
BCH, binary, e=2, 65
complete, 5
Fire, 110
geometric Goppa code, 93
Goppa, 79
Goppa, binary, 82
hard decision, 5
incomplete, 5
majority-logic, 51
maximum likelihood, 5
multi-step, 51
optimum, cyclic 2-burst-correcting, 119
Reed Solomon, 74
soft decision, 5
syndrome decoding, 20
Viterbi, 132

defining set, 61
degree, 44, 87, 159, 172

of a monomial, 87
of a polynomial, 44
of a syndrome, 87, 88

demodulator, 138
depth, 106
designed distance, 66
discrepancy, 90
distance

free, 130

187



CODING THEORY

Hamming, 11
divide, 145
dual code, 19

elliptic curve, 84
encoder, 5
entropy function, 7
equivalence class, 151
equivalence relation, 151
equivalent, 14
erasure, 3
erasure correction, 12
error, 2
error and erasure channel, 3
error evaluator polynomial, 75
error location, 75
error locator polynomial, 75
error value, 75
error-correction, 12
error-detection, 12
Euclid’s Algorithm, 76
Euclid’s algorithm, 146
Euler’s Totient Function, 148
even weight code, 17
extended, 37
extension field, 168

Fibonacci numbers, 175
field, 155

commutative, 156
extension, 168
finite, 156
Galois, 156
ground, 168
sub–, 156

finite, 156
Fire code, 108
first error probability,, 136
Fourier transform, 88
free distance, 130
function, 82
fundamental path, 134
fundamental path enumerator, 135

Galois field, 156
gap, 109
Gaussian channel, 3
gcd, 146
generate, 156, 160
generator matrix, 17, 125
generator polynomial, 57
geometric Goppa code, 82
Gilbert-Varshamov bound, 15
Golay code, binary, 69
Golay code, ternary, 70
Goppa code, 72
greatest common divisor, 146
Griesmer bound, 39
ground field, 168
group, 153

commutative, 153
cyclic, 156
finite, 156
sub–, 154

Hamming bound, 13
Hamming code, 41
Hamming distance, 11
Hamming weight, 16
hard decision, 5

ideal, 155
idempotent, 99
incomplete, 5
incorrect candidate, 90
information rate, 6
information symbol, 18
information vector, 17
inner code, 40
interleaving, 106
invariant factors, 126
inverse, 153
invertible, 125
irreducible, 159
isomorphic, 167

key equation, 75

lcm, 146
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least common multiple, 146
length, 11, 103
linear code, 16
linear congruence relation, 150
linear unequal error protection code, 28
log table, 166
LUEP code, 28

MacWilliams relations, 24
majority-logic decoding, 51
Mattson-Solomon polynomial, 67
maximum distance separable code, 15
maximum likelihood decoder, 5
MDS code, 15
message vector, 17
minimal polynomial, 62, 172
minimum distance, 12
Möbius function, 162
Möbius Inversion Formula, 163
modulator, 138
modulo, 149, 158
monic, 161
multi-step, 51

narrow-sense, 66

operation, 152
optimal generator matrix, 29
optimum, cyclic, b-burst-correcting code,

105
order, 156
orthogonal, 19
outer code, 40

p-ary, 160
parity check matrix, 18
parity check polynomial, 59
parity check symbol, 19
path enumerator, 135
perfect, 13
period, 108
point, 82
polynomial, 159

error evaluator, 75

error locator, 75
generator, 57
Mattson-Solomon, 67
minimal, 62, 172
monic, 161
parity check, 59
primitive, 60, 172

primitive n-th root of unity, 61, 164
primitive BCH code, 66
primitive element, 60, 164
primitive polynomial, 60, 172
principal character, 23
principal ideal ring, 160
projective code, 41
puncturing, 38

q-ary symmetric channel, 3

rate, 14, 125
receiver, 1
reducible, 159
redundancy, 4, 18
Reed-Muller code, 45
Reed-Solomon code, 68
Reiger bound, 104
relation, 151

congruence, 149
equivalence, 151
linear congruence, 150

repetition code, 14
residual code, 38
residue class ring, 158
ring, 154

commutative, 155
finite, 156
principal ideal, 160
residue class, 158
sub–, 155

RM, 45
root of unity, 164

self-dual, 19
self-orthogonal, 19
sender, 1
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separation vector, 27, 29
shortening, 38
Simplex code, 43
Singleton bound, 15
sink, 1
soft decision, 5
source, 1
sphere, 12
sphere packing bound, 14
standard form, 18
state, 125
subfield, 156
subgroup, 154
subring, 155
survivor, 131
syndrome, 20

first order, 87
second order, 88

syndrome decoding algorithm, 20
systematic, 18

trace, 24, 177
trellis, 129
trivial code, 12

unique, 70
unit-element, 152

Viterbi decoding algorithm, 132

weight, 16, 131
weight enumerator, 23

zero-divisor, 156
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